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Abstract

Researchers of various research areas (e.g. defect prediction, software evolution, software
simulation) analyse software projects to develop new ideas or test their assumptions by
performing case studies. But to analyse software projects, two different steps need to be
taken: (1) the mining of the project data, which includes pre-processing, calculation of
metrics and synthesizing composite results and (2) performing the analysis on basis of the
mined data. The process of analysing a software project is often divided into these two
steps and therefore, different tooling is used to perform them (e.g. CVSAnaly for mining,
WEKA[50] for analysis). Furthermore, the tooling for these steps is very versatile. This
raises the problem, that performed studies are often not replicable. Therefore, the pos-
sibility of performing meta-analyses (analyse an analysis) is not given. Additionally, the
mining and combination of information from different data sources (e.g. mailing lists and
source code repositories) is a complex and error-prone task. Furthermore, there is an ever-
growing need for performing the analysis of a large amount of data efficient and fast. Our
solution for these problems is the development of a platform, which incorporates the min-
ing and the analysis of software projects and present it with an easy to use web interface to
the researcher. Furthermore, our platform is designed as a general-purpose platform and
uses different big data technologies and frameworks (e.g. Apache Spark, Apache Hadoop)
to make an efficient and fast analysis of the mined data possible. Additionally, this plat-
form can be automatically deployed in a cloud infrastructure. We have used our platform
for mining different projects and conducting defect prediction research on the mined data.
The results show, that our platform is a useful tool for conducting software project research.
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1. Introduction

Repository mining and software analytics became an important research area nowadays
[53, 56, 60, 63]. Both fields are interconnected: The results of repository mining are often
used to perform software analytics. The area of software analytics is broad. It includes,
e.g., software evolution [25, 45], defect prediction [43, 53] or software process simulation
[56]. Most of the work in these and related areas use Open Source Software (OSS) projects
like Linux [45], Eclipse [68, 94] or Firefox [93] as case studies to evaluate their research
results. The first step in conducting research on a software project is the mining of the
project data. The mining process comprises of several steps with the goal to extract useful
information from software and its related artifacts. This information can include basic
facts about the artifacts like changes that have been made and software quality metrics
like Object Oriented (OO) metrics [21]. The mining process is time intensive and fault-
prone, because the aggregation of information from different sources, like Version Control
Systems (VCSs) and Issue Tracking Systems (ITSs), and the usage of different tools for
the manifold tasks make the merging of the results complicated. Data repositories like
tera-PROMISE [69] and GitHub archive1 collect data and facilitate research on common
data sets, but do not provide means for the data analysis. On the other hand, projects
like Bitergia2 try to analyse the projects. But Bitergia provides only Business Intelligence
(BI) about projects, is a closed-source solution and, moreover, does not support complex
analysis, e.g., based on machine learning. Other platforms, such as CrossPare [54] focus
only on analytics and completely omit the data mining.

After the mining process is completed, researchers want to derive knowledge out of
the mined data. The analysis possibilities are versatile (e.g. defect prediction, software
evolution) and time consuming, because of the huge amount of mined data. Additionally,

1See: https://www.githubarchive.org/.
2See: http://bitergia.com/.
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1. Introduction

to perform the mining and analysis of a project an infrastructure must be set up, which
covers the needs of the researcher.

Another problem that remains till today is, that studies that were performed are often
not replicable [67]. The use of proprietary data for the development of models (e.g. defect
prediction models) and the usage of different tooling and platforms for mining and pro-
cessing the data are two of many reasons for this. This raises the problem, that results of
one analysis can not be used to improve the results of another. Therefore, researchers are
forced to start over every time they do a new analysis and can not reuse results from other
researchers [16].

All the mentioned problems raise the need for a platform, which incorporates the mining
and the analysis of projects. Furthermore, to make the platform useful for a broad range
of researchers, it should have certain characteristics: (1) It should be easy to use and to
deploy, (2) allow scalable and flexible analytics, (3) be extensible with new approaches, and
(4) allow analysis of different kinds of data collected from multiple sources. The platform
needs to be scalable, so that it can process even large projects in a acceptable amount of
time. Flexibility and extensibility are important, because researchers often want to improve
or customize their tools, so that they completely fit their needs. The data collection is the
fourth important part: The platform needs to collect a variety of information, so that it
can be used for many different research areas and not only for specific areas like defect
prediction or software evolution.

In this master’s thesis, we introduce a platform, which has all the aforementioned char-
acteristics. It enables researchers to automatically mine project data and provide them
with powerful and scalable tooling for the analysis of the data. Our platform mines the
complete history of a project and collects static source code metrics, change metrics, social
metrics, as well as the diffs for each revision. It makes use of the DECENT Model [66] to
aggregate information from different sources and uses modern big data technologies like
Apache Hadoop 3, MongoDB4, and Apache Spark5 for a fast project analysis. By employ-
ing MongoDB as a state-of-the-art NoSQL database, we grow a repository with data about
software projects, that can be exploited by researchers. Furthermore, we developed a web-

3See: https://hadoop.apache.org/.
4See: https://www.mongodb.org/.
5See: https://spark.apache.org/.

9

https://hadoop.apache.org/
https://www.mongodb.org/
https://spark.apache.org/


1. Introduction

based Graphical User Interface (GUI), where new projects can be easily added, mined and
analysed. The results of the analysis are also presented via the GUI, together with the
mined projects. Through this, the reporting also becomes part of the platform, which is the
precursor for putting the software analytics into action.

Additionally, we developed scripts for the automated deployment of our platform in a
cloud, based on OpenStack6. This way, our platform can be installed in private clouds, to
create private data repositories and analytics approaches, as well as in public clouds for
the sharing of data and analytics.

Our main contributions are the following:

• Development of a cloud platform for scalable software analytics based on Apache
Spark.

• A software mining approach that is integrated into our platform to update data and
collect information about new projects.

• Combination of different data sources that allow to combine text mining with source
code, change and social metrics.

The remainder of this thesis is structured as follows: In Chapter 2 the foundations of
our work is explained. Chapter 3 covers the conceptual design of our platform. In this
chapter, we describe the interaction of the different parts of the system. The actual im-
plementation is illustrated in Chapter 4. We present several case studies in Chapter 5 to
evaluate our platform and its usefulness for mining software project data and conducting
defect prediction research. In Chapter 6 we illustrate our results and discuss it. Problems,
drawbacks and threads to validity of our approach are illuminated in Chapter 7. Chapter
8 lists related work. We compare the approaches introduced in this chapter with our own
and highlight the differences. Finally, in Chapter 9, we conclude this thesis and point out
different possible improvements and research directions.

Parts of this thesis were used as a foundation for a paper. The resulting paper can be
found in Appendix C.

6See: https://www.openstack.org/.
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2. Foundations

In the following chapter the foundations for this masters thesis are described. First, a
short overview of the the DECENT model is given (see Section 2.1). Additionally, we de-
scribe different technologies, that are used for big data nowadays and which we also use
in our platform. This includes Apache Hadoop (see Section 2.2), Apache Spark (see Sec-
tion 2.3), and MongoDB (see Section 2.4). We also explain the fundamental concepts of
the Yii Framework1 (see Section 2.5) in this chapter. The last section is about the deploy-
ment management. We shortly describe the deployment management tools Vagrant2 (see
Section 2.6.1) and Ansible3 (see Section 2.6.2).

2.1. DECENT Model

The context in which mined information should be used is important. Many tools and
methods, which are used for data extraction and application, are context-specific. These
tools are hard to adapt to different circumstances, because of the tight coupling between
the extraction process and the application [66].

Makedonski et al. [66] proposed a model-based software mining infrastructure to cir-
cumvent these problems. The framework relies on "homogeneous high-level domain-
specific models of facts extracted from raw assets" [66]. These different domain-specific
models are then combined and transformed into models, that are related to a certain as-
sessment task [66]. These models make use of the Eclipse Modeling Framework (EMF).
The EMF is used to build tools and applications based on structured data models. The

1See: http://www.yiiframework.com/.
2See: https://www.vagrantup.com/.
3See: http://www.ansible.com/.
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2. Foundations

Figure 2.1.: Diagram for the DECENT domain-specific meta-model for developer-centric assessment tasks. Source: [66]

model, which represents (part of) a real world problem, needs to be specified in the XML
Metadata Interchange (XMI) format. The EMF provides tools, like a code generation facil-
ity, which produce Java classes for the model. These classes can be used to interact with
a model instance directly in Java code. Additionally, it produces different adapter classes,
which enables viewing and editing the model [34].

Figure 2.1 illustrates a concrete instantiation of this model-based software mining in-
frastructure. DECENT is a meta-model for "developer-centric assessment tasks, including
the corresponding concepts and the relationship among them" [66]. The mining process to
collect the data, that is needed for a concrete instantiation of a DECENT model, is divided
into different steps [66]:

1. Facts Extraction: Raw assets (like Git repositories, BugZilla reports) are used to ex-
tracts facts out of it. There are different tools used for this facts extraction process:

12



2. Foundations

• CVSAnalY4: CVSAnaly is widely used in research [39, 55]. It processes the VCS
logs and stores its extracted facts into a MySQL database. But CVSAnalY flat-
tens the revision hierarchy. Therefore, a Directed Acyclic Graph (DAG) of the
revision hierarchy is also extracted, "by means of a separate custom facts ex-
tractor (DAG-GitExtractor), which produces a Comma Separated Values (CSV)
representation of the revision hierarchy" [66].

• InFamix5: Files within each revision of the project are processed by InFamix.
InFamix processes Java or C/C++ code and calculates different metrics for each
file, class, method, and function. For each revision, a Famix 3.0 model instance
is created. These models are in the MSE6 notation and store the results of this
fact extraction step. Furthermore, the extractor is wrapped in a "custom facts
extractor automator (FX)" [66], which is responsible for the checkout of each
revision and the facts extraction execution.

• DuDe7 [31]: Similar to InFamix, DuDe is also wrapped in the same FX. It is
used for duplication detection and generates facts assets in Extensible Markup
Language (XML) format for each revision.

• BZExtractor: Makedonski et al. [66] developed a custom BugZilla8 extractor,
which is used to extract information (facts) from BugZilla issue reports. The
results are stored in a MySQL Database.

2. Facts Translation: The generated heterogeneous facts assets are translated into ho-
mogeneous facts model instances. The structure of the facts assets are described by a
set of meta-models (e.g. MG, FAMIX), which the facts model instances conform.

3. Facts Transformation: The for the assessment task relevant parts of the different
model instances are then transformed into a assessment-specific domain-model,
which conforms to the DECENT meta-model. In this step, Makedonski et al. rely on
the Epsilon Transformation Language (ETL). Therefore, different information from

4See: http://github.com/MetricsGrimoire/CVSAnalY.
5See: https://www.intooitus.com/products/infamix.
6See: http://www.moosetechnology.org/docs/mse.
7See: http://www.inf.usi.ch/phd/wettel/dude.html.
8See: https://www.bugzilla.org/.
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different sources at different abstraction levels are stored in the DECENT model in-
stance.

4. Assessment Transformation and Application: The newly created DECENT model
instance, can now be "queried to produce different assessment assets, which are fed
into the assessment application" [66] (e.g. Weka). Makedonski et al. rely on Epsilon
Object Language (EOL) scripts to query the model instance.

2.2. Apache Hadoop

Apache Hadoop9 is a framework used for distributed processing of large data sets. It
is developed as a project of the Apache Software Foundation (ASF). Apache Hadoop is
designed to run fail-safe on commodity hardware. Large problems are split into smaller
chunks, which are then distributed in a cluster, which was previously created. This way,
Apache Hadoop can react on hardware failures by reassigning the job to other nodes. Fur-
thermore, it utilizes the hardware capabilities of all nodes [8].

2.2.1. MapReduce

MapReduce (MR) is a programming model, that emerged at Google [26]. There was a need
for a programming model, which can be used to process large datasets for possibly ver-
satile tasks. The developer should be able to concentrate on the application code, without
having to bother with common problems like load balancing, data partitioning or failure
handling. A MR program consists of a map and a reduce function. The map function has
key/value pairs as input and produces new key/value pairs as output. Now, the library
sorts this output by key and those pairs with the same key are passed to the reduce func-
tion. This function implements some action to merge the values for that key together. An
example for the application of the MR paradigm is the word count problem. The result for
this problem should be a list of words and how often they occur in a text document [26].

Listing 2.1 shows Pseudo-code for a solution to the above stated problem based on MR.
The map function emits pairs of the word and the value one for each word in a line. Then,

9See: https://hadoop.apache.org/.
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the reduce function gets pairs of word and "1" as input. These pairs are created, by aggre-
gating the result of the map function by key. The reduce function iterates over the "1" for
each key and adds them up to create the word count.

1 map( S t r i n g key , S t r i n g value ) :
2 // key : document name
3 // value : document contents
4 f o r each word w in value :
5 EmitIntermediate (w, " 1 " ) ;

7 reduce ( S t r i n g key , I t e r a t o r values ) :
8 // key : a word
9 // values : a l i s t of counts

10 i n t r e s u l t = 0 ;
11 f o r each v in values :
12 r e s u l t += P a r s e I n t ( v ) ;
13 Emit ( AsString ( r e s u l t ) ) ;

Listing 2.1: MapReduce WordCount in pseudo-code. Source: [26]

The execution phases are depicted in Figure 2.2. They strongly depend on the actual
MR paradigm implementation and the underlying hardware. There are seven processing
phases [26]:

1. First, the input file(s) are split into M smaller pieces of configured size by the MR
framework. Each piece is send to a map job afterwards, as input.

2. One node is the master node. It assigns idle nodes different map tasks.

3. Each worker node processes their assigned input split, parses key/value pairs and
passes them to the map function. The results (intermediate key/value pairs) are
buffered in memory.

4. Periodically, these buffered pairs are partitioned and written to local disk. The mas-
ter node receives the buffered pairs locations and passes this location to the reduce
worker nodes.

5. Each reduce worker reads the data, which was assigned to them, and sorts it by key.
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Figure 2.2.: MapReduce execution phases. Source: [26]

6. For each key in the input data the reduce function is executed and appends the result
to the final output file.

7. After the completion of all map and reduce tasks, the master node wakes up the user
program.

2.2.2. Hadoop Distributed File System (HDFS)

As we have seen in Section 2.2.1, all worker nodes of a Apache Hadoop cluster need access
to shared data sets to perform the required actions. This raises the need for a distributed
file system. A centralized file system does not fulfil the requirement of fail-safeness on
commodity hardware. It would introduce a single point of failure. Hence, Apache Hadoop
relies on its own file system, which is called Hadoop Distributed File System (HDFS). The
HDFS was developed with the assumption, that hardware failures are the norm rather than
the exception. Therefore, the recovery mechanism is implemented in software and Apache
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Hadoop resigns on the usage of typical hardware mechanism like Redundant Array of
Independent Disks (RAID) [9].

The HDFS architecture is illustrated in Figure 2.3. It employs a master/slave concept.
Clients can perform read and write operations on the HDFS. An HDFS consists of different
parts [9].

1. A single (primary) namenode: Master server, that manages the namespace of the file
system and regulates access to files. It executes file system operations (open, close,
rename of files and directories). Furthermore, it maps blocks to datanode and stores
the filesystem metadata.

2. Datanodes (usually one per node in the cluster): Manages the storage of the nodes,
where the datanode runs on. Responsible for processing read and write requests from
the file system clients. Furthermore, it performs block operations (creation, deletion,
replication), if the namenode gives the instruction. Furthermore, the blocks of a file
are replicated to achieve fault tolerance.

3. A secondary namenode: Creates checkpoints periodically. The current image of the
primary namenode is downloaded, additionally to the log files, which are edited and
joined. The resulting new image is uploaded back to the primary namenode.

The HDFS is written in Java. Therefore, every machine that has Java support is able to
run the namenode or datanode software.

17
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Figure 2.3.: HDFS architecture. Source: [9]

2.2.3. Yet Another Resource Negotiator (YARN)

Yet Another Resource Negotiator (YARN), which is also called MR 2.0 (MRv2) has been
introduced in Apache Hadoop version 2.0. The reasons was, that "developer extended the
MapReduce programming model beyond the capabilities of the cluster management sub-
strate" [86]. The limitations of the MR Application Programming Interface (API) resulted
in a misuse of it by developers [86]. Hence, the limitations were negotiated by not only
focusing on MR as processing paradigm. Other processing paradigms can be added via
user-defined applications. The architecture of YARN is depicted in Figure 2.4 [86].

The ResourceManager consist of a Scheduler and an ApplicationManager (AMService).
Clients of the Apache Hadoop cluster can interact with the ResourceManager. The Sched-
uler is responsible for the allocation of resources for the different running applications. But
it needs to subject to constrains like capacities or queues. The ApplicationManager handles
job submissions and negotiates the first container [86].
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Figure 2.4.: YARN architecture (in blue the system components, and in yellow and pink two applications running).
Source: [86]

The local resources on each node are monitored by the NodeManager, which runs on
each node in the cluster. Furthermore, it reports faults and manages the container lifecy-
cle (e.g. start, kill). Each application has an Application Master (AM), which negotiates
resources from the Scheduler in form of containers. In Figure 2.4 there are two different
applications. As we have stated above, the applications that run on YARN are not limited
to the MR paradigm. Therefore, the yellow application uses the Message Passing Inter-
face (MPI), whereas the pink application uses the classical MR. There are several nodes in
the cluster, which run the NodeManager. The pink application has its AM on the second
node, whereas the yellow application has its AM on the first node. Furthermore, the AMs
are communicating with the ApplicationManager to get resources in form of containers.
The container for both applications are located at the first node. The pink application addi-
tionally has resource container on the last depicted node. Furthermore, all NodeManagers
are communicating with the ResourceManager and giving status reports to it [86].
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2.3. Apache Spark

Apache Spark is a framework, implemented in Scala10, which focuses on big data analytics.
Because of MRs inefficiency for certain applications (especially multi-pass, which require
"low-latency data sharing across multiple parallel operations" [12]), the AMPLab11 at UC
Berkeley developed this framework. These multi-pass applications are common in big data
analytics: Examples are iterative algorithms like PageRank, interactive data mining, where
data is loaded into the Random-Access Memory (RAM) across a cluster and repeatedly
queried, and streaming applications, which maintain an aggregate state over time [91, 92].

The core of Apache Spark is an abstraction called Resilient Distributed Datasets (RDDs).
This abstraction was especially designed to efficiently support the above named applica-
tions. RDDs are defined as a "fault-tolerant collection of elements that can be operated on
in parallel" [10]. Furthermore, they have the ability to rebuild lost data, if something failed,
using lineage. Listing 2.2 shows an Apache Spark text search example in Scala. This code
is used to count lines, which contain errors in a large logfile, stored in the HDFS (see 2.2.2).
At first, the file is loaded from the HDFS. Then it is filtered in a way, that it only contains
lines with "ERROR" in it. Now we have a classical map reduce: The lines are mapped to
key/value pairs with (line, 1) and after that reduced (the ones are summed up). This is
similar to the word count example explained in Section 2.2.1.

1 val f i l e = spark . t e x t F i l e ( " hdfs : / / . . . " )
2 val e r r s = f i l e . f i l t e r ( _ . conta ins ( "ERROR" ) )
3 val ones = e r r s . map( _ => 1)
4 val count = ones . reduce ( _+_ )

Listing 2.2: Apache Spark text search example. Source: [92]

Figure 2.5 depicts the lineage of each RDD. Each object in the dataset has a pointer to its
parent with the information about how the parent was transformed before. Therefore, if a
failure occurs and an object is lost, it is possible to reconstruct the object using the lineage
of it. There are different types of RDDs, but they only differ in the implementation of the
RDD interface, which consists of three operations [92]:

10See: http://www.scala-lang.org.
11See: https://amplab.cs.berkeley.edu/.
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Figure 2.5.: Lineage chain for the distributed dataset objects defined in Listing 2.2. Source: [92]

1. getPartitions, return a list of partition IDs.

2. getIterator(partition), iterate over a partition.

3. getPreferredLocations(partition), used for task scheduling.

Figure 2.6 illustrates a comparison of the performance of a logistic regression job be-
tween Apache Spark and Apache Hadoop (see Section 2.2). Input was a 29 Gigabyte (GB)
dataset and it was processed on 20 "m1.xlarge" EC2 nodes12 with 4 cores each. Apache
Spark outperforms Apache Hadoop, if more than one iteration is used. This highlights the
main application area of Apache Spark.

Apache Sparks cluster mode architecture is depicted in Figure 2.7. Spark applications
are coordinated by the SparkContext object in the main program (in Spark called: driver
program) and run as an independent set of processes on a cluster. But to run a cluster,
the SparkContext must be connected with a cluster manager. Hence, Apache Spark offers
different connections or deployment methods [11].

1. Standalone Mode, where Apache Spark itself provides a simple cluster manager.

2. Mesos Mode, where Apache Mesos13 is used as cluster manager.

3. YARN Mode, where YARN is used as cluster manager (see Section 2.2.3).

12See: https://aws.amazon.com/de/ec2/previous-generation/.
13See: http://mesos.apache.org/.
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Figure 2.6.: Comparison of the logistic regression performance of Apache Hadoop and Apache Spark. Source: [92]

Additionally, Apache Spark provides Amazon EC214 scripts, which launch a standalone
cluster on an Amazon EC2.

When Apache Spark is connected to the cluster manager, it acquires executors on nodes
in the cluster. These have different tasks, including running computations and storing
data for the executed application. After that, Spark sends the application code (e.g., a
Java Archive (JAR) or Python file, which were passed to SparkContext), to the different
executors. The last step is the distribution of tasks to the executors, which then run these
tasks [11]. There are several things to note.

• Apache Spark spawns executor processes for each application, which run tasks in
multiple threads and stay up for the whole application lifetime. Therefore, applica-
tions are isolated on the scheduling and executor side, but this has the downside,
that no data can be shared between different applications.

• Apache Spark does not notice the cluster manager. The cluster manager only needs
to answer on the acquisition of executor processes.

• The driver program needs to accept incoming connections from its executors. Fur-
thermore, it must be listening for and accept these connections throughout its whole
lifetime.

14See: https://aws.amazon.com/de/ec2/.
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Figure 2.7.: Apache Spark cluster architecture overview. Source: [11]

• Because of the tight connection between the driver and the worker nodes (driver
schedules tasks on the worker), they should run on the same Local Area Network
(LAN) with a high-speed connection.

Furthermore, Apache Spark supports libraries for different applications [10]:

• Machine Learning Library (MLlib)15, for machine learning tasks like clustering,
classification, regression, and dimensionality reduction.

• GraphX16, for graph and graph-parallel computation.

• SparkR17, a package that provides a frontend for using Apache Spark from R.

• SparkSQL18, which provides DataFrames as programming abstraction and can act
as a distributed SQL querying engine.

15See: https://spark.apache.org/docs/latest/mllib-guide.html.
16See: https://spark.apache.org/docs/latest/graphx-programming-guide.html.
17See: https://spark.apache.org/docs/latest/sparkr.html.
18See: https://spark.apache.org/docs/latest/sql-programming-guide.html.
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2.4. MongoDB

MongoDB is an open source NoSQL database, which is document-oriented. It is commer-
cially supported by 10gen and is developed in C++. The first public release was in 2009
and the actual version is 3.0.4 [4]. MongoDB is widely used in research and industry [41,
73, 87].

MongoDB organize its data in documents instead of classical tables with rows and col-
umns. Each of these documents is an associative array, which can consist of scalar val-
ues, lists or even nested associative arrays. These documents are saved in collections,
which can be seen as a group of documents. Naturally, MongoDB documents are seri-
alized as Javascript Object Notation (JSON) objects. In fact, they are stored in the Binary
JSON (BSON) format, which are binary encoded JSON objects. Another feature of Mon-
goDB, which is similar to a relational database, is indexing. Each document is identified by
an "_id" field. By default, an unique index over this field is created. Indexing is important
for efficiently querying data from the database, but can have a negative impact on write
operations. Furthermore, a "compound index" can be specified, which is an index over
several fields within a specified collection [4].

MongoDB posses two features, which are especially interesting in a big data context:
Durability and concurrency. Durability is achieved by the creation of replicas. MongoDB
uses a Master-Slave replication mechanism. Therefore, the master can write and read files
and the slaves serve as a backup. Hence, slaves can only perform reading operations.
If the master fails, the slave with the most recent data is promoted. MongoDB uses an
asynchronous replication technique. Therefore, the updates that are done to the MongoDB
are not spread immediately [4].

Concurrency is archived by sharding. It is used to scale the performance on a cluster
of servers. Sharding describes the process of splitting the data evenly across the cluster.
Hence, a parallel access is possible [27]. The process of splitting up a collection is depicted
in Figure 2.8. It reduces the number of operations that each shard needs to handle and the
amount of data that each server needs to store. Therefore, it enables higher throughput
and the use of large data sets, which possibly can not be stored on a single node [27].
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Figure 2.8.: MongoDB sharding overview. Source: [72]

Another advantage of using MongoDB as data storage backend is the high availability
of tools, which support MongoDB. MongoDB is supported by common languages like
Java, Python, PHP Hypertext Preprocessor (PHP), Perl and there also exists frameworks,
which make the data management easier. One example for such a framework is Morphia19,
which is a Plain Old Java Object (POJO) mapper, that makes the usage of MongoDB in
Java more comfortable [71]. Furthermore, there are also connectors to Apache Spark (see
Section 2.3). Two examples are Spark-MongoDB20 and Deep-Spark21. These connectors
relieve the usage of Apache Spark with MongoDB.

19See: https://mongodb.github.io/morphia/.
20See: https://github.com/Stratio/spark-mongodb.
21See: https://github.com/Stratio/deep-spark.
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2.5. Yii Framework

Yii is a PHP based web framework, which is currently in version 2.0. Since version 2.0,
Yii requires PHP 5.4.0 or above to run. Yii implements the Model-View-Controller (MVC)
design pattern. Furthermore, it facilitates the code organization based on this pattern [89].

Figure 2.9 illustrates structure of an application running with the Yii framework. Models
represent rules, business logic as well as data. Views are the representation of models, like
they are seen by the user. Controllers have the task to take input and convert it to different
commands, which can be processed by models and views. Besides MVC, the following
entities are shown in the Figure [90]:

• Entry scripts: These scripts are used for starting a request handling cycle. Further-
more, these are the PHP scripts, which are directly accessible by users.

• Applications: Applications are objects, which are globally accessible. They manage
all app

• Application components: Application components provide different services for ful-
filling requests. They are objects, which need to be registered with applications.

• Modules: Modules can contain complete MVC by themselves. Furthermore, they are
self-contained packages.

• Filters: Filter code is invoked before and after the request handling of each request
by the controller.

• Widgets: Widgets are used in views. They are reusable and can contain logic.

• Asset bundle: Assets are files, which may be referenced in a webpage (e.g., a
Cascading Style Sheets (CSS) file, image, video or Javascript (JS) file).

Furthermore, the Yii framework is extensible. At the time of writing this thesis, there
exist over 1900 extensions22. Additionally, it provides many features, which are best prac-
tice nowadays, like ActiveRecords (for relational and NoSQL databases), multi-tier caching
support or support for a Representational State Transfer (REST)ful API development.

22See: http://www.yiiframework.com/extensions/.
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Figure 2.9.: Yii application structure overview. Source: [90]

2.6. Deployment Management

The setup of a cluster can be divided into two separate, but interconnected tasks: The
infrastructure management and the software configuration management. To make these
tasks manageable and executable by non-experts, several tools were developed in recent
years. Two of these tools are described in this section: Vagrant23 (see Section 2.6.1) for the
infrastructure management and Ansible24 (see Section 2.6.2)for the software configuration
management.

2.6.1. Vagrant

As we use Vagrant in this thesis for deploying the infrastructure in a cloud environment,
we refer to infrastructure management as software, that automates the provisioning of vir-
tual machines. This provisioning is based on user-defined rules and can be understood as

23See: https://www.vagrantup.com/.
24See: http://www.ansible.com/home.
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the instantiation of a Virtual Machine (VM) with an operation system. Therefore, only the
VM with the operating system is set up by Vagrant, no other software is set up or config-
ured, because this is handled by the software configuration management tool Ansible (see
Section: 2.6.2).

As we have stated above, the setup of a cluster is a complex tasks. This derives from the
complexity of cluster architectures and the need for testing these. Therefore, researchers
need to have knowledge about cluster architectures, all the used software, the deployed
infrastructure, and potentially also about the cloud platform used. Hence, they can not
only focus on their research, but need to bother with the infrastructure where their research
run on. This raises the need for tools like Vagrant: It allows the researcher to define the
desired infrastructure in a file [74].

An example for a so-called Vagrantfile is shown in Listing 2.3. Vagrantfiles are written
in Ruby 25 syntax. Furthermore, they allow the embedding of arbitrary Ruby code.

1 # −∗− mode : ruby −∗−
2 # vi : s e t f t =ruby :

4 Vagrant . conf igure ( " 2 " ) do |conf ig|
5 conf ig .vm. def ine : server1 do |server1|
6 server1 .vm. box = " p r e c i s e 6 4 "
7 end

9 conf ig .vm. def ine : server2 do |server2|
10 server2 .vm. box = " p r e c i s e 6 4 "
11 end
12 end

Listing 2.3: Vagrantfile example. Source: [74]

In this example, we configure vagrant with the API version 2 (line 4). We define two
different virtual machines: Server1 and Server2 (see lines 5 and 9). The "x.vm.box" line
indicates, which image should be installed on these machines. Here we have chosen "pre-
cise64" for both machines (see lines 6 and 10). It is not mentioned in this file, where the vir-
tual machines should be created. Vagrant works with VirtualBox26, by default. But there
25See: https://www.ruby-lang.org/de/.
26See: https://www.virtualbox.org/.
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exist plugins, which add providers. Besides providers for VMware27 and Amazon Web
Services (AWS) 28, there is a provider for the OpenStack Infrastructure as a Service (IaaS)
platform, which is used for this thesis29. As different providers need different input (e.g.,
the OpenStack provider requires login credentials) the example given above can not be
applied to all providers. After the creation of the Vagrantfile, the developer can run the
vagrant up command. Vagrant then communicates with the specified provider to provi-
sion the virtual machines defined in the file. Vagrant provides commands for the whole
infrastructure life-cycle: Changes of the Vagrantfile are applied via vagrant reload, virtual
machines are removed via vagrant destroy, the status of the infrastructure can be checked
via vagrant status and the shut down of the virtual machines can be initiated via vagrant
halt [51].

2.6.2. Ansible

As Vagrant (see Section 2.6.1) only covers the provisioning of the infrastructure, a tool is
needed to deploy and configure the software on the different machines. Well-known tools
for this task are Puppet30, Chef31, or Ansible. In this thesis Ansible is used. Nevertheless,
they all have in common, that a Domain-Specific Language (DSL) is used to declare rules
for the system setup. This approach, compared to manually configuring the systems, has
the advantage, that it makes versioning possible. Furthermore, the infrastructure can be
recreated at any time and the system configuration can be split into smaller pieces, which
are then better manageable [6].

Listing 2.4 shows an example for an Ansible playbook. Playbooks are scripts that define
which software should be installed in a VM and how the software should be configured.
The YAML Ain’t Markup Language (YAML) format is used for defining these playbooks,
which ensures that the files are human-readable.

1 −−−
2 − hosts : webservers

27See: https://www.vmware.com/de.
28See: http://aws.amazon.com/de/.
29See: https://github.com/ggiamarchi/vagrant-openstack-provider.
30See: https://puppetlabs.com/.
31See: https://www.chef.io/chef/.
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3 vars :
4 ht tp_por t : 80
5 max_cl ients : 200
6 remote_user : root

7 t a s k s :
8 − name : ensure apache i s a t the l a t e s t vers ion
9 yum: pkg=httpd s t a t e = l a t e s t

10 − name : wri te the apache conf ig f i l e
11 template : s r c =/srv/httpd . j 2 dest=/ e t c /httpd . conf
12 n o t i f y :
13 − r e s t a r t apache
14 − name : ensure apache i s running ( and enable i t a t boot )
15 s e r v i c e : name=httpd s t a t e = s t a r t e d enabled=yes
16 handlers :
17 − name : r e s t a r t apache
18 s e r v i c e : name=httpd s t a t e = r e s t a r t e d

Listing 2.4: Ansible playbook example. Source: [7]

At first, it is defined which machines are targeted with this playbook (see line 2). Mean-
ing, on which machines the playbook is executed. In the example above, the playbook
is executed on the group "webservers". Furthermore, there are several variables defined:
"http_port" (value: 80) and "max_clients" (value: 200) (see lines 3 - 5). These are envi-
ronment variables for the execution of this playbook. After that, the user is chosen, with
which privileges the playbook is executed (see line 6). Then several tasks are defined by
giving them a descriptive name and an action (see lines 8-9, 10-13, 14-15). Ansible pro-
vides modules for different purposes32, e.g., the service module for managing services. In
the last step a handler is defined, which restarts the Apache httpd service using the service
module (see lines 16 and 17). The calling of this handler is shown in the second task of this
example (see line 13), where the Apache httpd service is restarted after changes were made
at the configuration file.

32See: https://docs.ansible.com/ansible/list_of_all_modules.html.
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In this chapter the design of our platform is illustrated. First, we give an analysis of today’s
situation of how software projects are analysed and highlight the existing problems (see
Section 3.1). Then, we shortly describe our platform in Section 3.2. Additionally, we give
an overview of how a project is mined (see Section 3.3) and analysed (see Section 3.4) with
the help of the developed platform. In the last part of this chapter (see Section 3.5), we
describe our cloud deployment.

3.1. Situation Analysis

There are several problems with researching OSS and software projects in general nowa-
days. These problems are unveiled, if we look at how research is done. The first step is
the statement of a hypothesis. The basis of such a hypothesis, is often an idea or drawn
from experience, former research or from the available research data. The next step is the
formulation and execution of experiments to validate or reject the hypothesis. To perform
this step, data is needed for the execution of such experiments. E.g., the field of software
evolution mostly use OSS projects to perform their experiments [45, 68]. This is also true
for the area of defect prediction [93, 94]. Data that is interesting for both areas are bug
information data, change history or metrics of different software artifacts and is often ob-
tained through Mining Software Repositories (MSR) [62]. Nevertheless, other research on
software projects might use different data.

One problem is the mining of the data, which is a hard task, because of the huge amount
of data and the need to combine data from different sources like VCSs and ITSs. Table 3.1
shows projects, which are often used in research and their number of commits and size in
Megabyte (MB), the number of files, and example publications, where these projects are
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Project Number of
Commits

Project
Size in MB

Number of
Files

Example
Publications

Eclipse JDT Core 21618 162 7736 [68]
Apache Web Server 27265 280 3578 [13]
Apache POI 965 243 4378 [69, 79]
Apache log4j 2644 18 642 [69]
Apache xalan-j 1714 77 1331 [15, 69, 79]
Apache xerces-c 1169 50 1603 [69, 79]

Table 3.1.: Number of commits, files and size of popular OSS projects.

used in. This table shows, that if we have big projects like the Eclipse JDT Core, the mining
is an exhausting and long running process. Nevertheless, there are also small projects or
just one or more release version(s) of these projects used in actual research papers (see Table
3.1). Furthermore, the mining includes a pre- and postprocessing of the data. Otherwise,
the data would not be in a usable format for further research. At the moment, researchers
develop their own tools or using tools like CVSAnaly (see Section 2.1) for the mining pro-
cess. The problem with this approach is a high variance in the quality of the mined data
[13] and that experiments are often not replicable [67]. This raises the problem, that re-
searchers can not base their own research on results from their colleagues. Furthermore,
meta-analyses (analysing an analysis) are not possible.

Besides the mining problem, there is also the problem of analysing the data: Because of
the huge size of the data, the analysis process is long-running and exhausting. Further-
more, some newly created methods need to return the analysis results (nearly) immedi-
ately, e.g., for informing the developer about problems with his commit [83]. This raises
the need for an analysis platform, which can handle a huge amount of data and presents
the results on-time.

Therefore, a mining and analysis platform needs to support parallel processing and it
needs to be scalable. Furthermore, it should be able to mine software projects in a replicable
way and it should gather as much data as possible, so that it can be used for a wide variety
of different research areas. Furthermore, it should be easy to use and deploy, because
most researchers are only interested in getting their analysis results and do not want to
bother with setting up the infrastructure. Additionally, the platform should be extensible,
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because researchers might want to add other data sources. All these needs are fulfilled by
the platform, which we present in the rest of this thesis.

3.2. Overview of the Platform

As it is explained in Section 3.1 there are two steps to perform to conduct research on a
software project: (1) mining of the project data and (2) analysis of the mined data. Fig-
ure 3.1 illustrates an overview of the platform. In this figure, the logical software level
is depicted, which is independent of the underlying infrastructure. The platform reduces
the manifold tasks of the researcher to two tasks: First, the choosing of the project, which
should be analysed. Second, the writing of the analysis program, which is used to create
or gather the desired results. After the researcher has chosen a project, the mining process
is started. The results are then saved in the MongoDB (see Section 2.4). After the min-
ing process is completed, the researcher can write his program, which is based on Apache
Spark (see Section 2.3). This analysis program is executed on the platform and accesses the
mined data in the MongoDB. A more detailed view on the mining and analysis processes
are presented in Section 4.1. All functionality is hidden behind a web front-end based on
the Yii2 framework (see Section 2.5).

Figure 3.2 gives an overview of the architecture of the platform. Generally, the platforms
infrastructure consists of four different parts: (1) webserver, (2) mining server, (3) Mon-
goDB, and (4) Apache Hadoop cluster. The researcher only communicates directly with
the webserver via a web front-end (see Section 4.2 for further information). The webserver
accesses the MongoDB (e.g., displaying information about mined projects), the mining
server (starting new mining jobs), and the Hadoop Cluster (via Apache Spark). The min-
ing server is used to mine different projects and to save the results in the MongoDB. It is
to note, that the MongoDB also should be deployed on a separate server for flexibility and
scalability. The executed Apache Spark jobs on the Apache Hadoop cluster make use of the
mined project data. Therefore, the Hadoop cluster needs to have access to the MongoDB.

33



3. Conceptual Design

Figure 3.1.: Platform design - Software level. This figure shows the two main tasks for conducting research on a soft-
ware project and how they are interconnected on the software level of the proposed platform.

Figure 3.2.: Platform design - Architecture overview. This figure shows the architecture of the proposed platform, which
consist of a webserver, a MongoDB, a Apache Hadoop cluster, and the mining server. The different parts of
the Apache Hadoop cluster are not shown here. For further information, refer to Section 2.2.
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3.3. Mining the Project - Make it ready-to-use

The mining of the project data is a hard task. In this section, we describe which data is
mined (see Section 3.3.1). Furthermore, it is illustrated how the results are saved in the
MongoDB and what schema is used (see Section 3.3.2). For a more detailed view on the
mining process, see Section 4.1.

3.3.1. Project Processing

The first step in the project mining process is the collection of data from different sources.
The next step is the calculation of intermediate results, which are based on the mined data.
We base our project mining on DECENT (see Section 2.1). Figure 3.3 gives an overview of
the different data, which is saved in the MongoDB. The data we obtain from the DECENT
file are change-based. For each change (i.e. commit), we store all changed software artifacts
and their location in the project. The software artifacts include files, classes, methods,
functions as well as documentation files (e.g. READMEs).

Figure 3.3.: Platform design - Saved data. This figure depicts the different data, which are saved in the MongoDB.

We store five different types of data for each artifact in the MongoDB. These are ex-
plained in the following.
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1. Software metrics: This includes change metrics, social metrics (e.g. developer co-
operation factor) and software quality metrics like Depth of Inheritance Tree (DIT)
or Cyclomatic Complexity (CC). Furthermore, we save delta values for each metric,
which indicate how the metric has changed since the artifact was last touched. If a
value is zero for such a metric, it will not be saved in the MongoDB to save resources.

2. Source code changes: In addition to the metrics, we also save the concrete textual
change that was made, i.e., the diff of the commit.

3. Project structure: For each change (i.e. commit) that is performed, we save the
changed artifacts. Additionally, for each artifact, we save the location of it. Hence, it
is possible to reconstruct the structure of the project at any point in time.

4. Change history: As it is stated above, we save what artifacts were changed in which
commit and also how they were changed. Hence, it includes the changes in the soft-
ware metrics, as well as changes in the source code (if we have code artifacts). This
is important to note, because this makes text analysis of source code possible.

5. Bug labels: Bug labels and a confidence indicator label are saved for each artifact
at each change. The confidence label indicates, if the resulting bug label (artifact is
bug-prone or not) can be trusted.

3.3.2. Saving the Results

As we have stated above, the results of the project mining are stored in a MongoDB. We
have chosen MongoDB as data storage backend, because it is already used in big data
environments [73], it is scalable due to sharding (see Section 2.4), it enables the creation of
replicas, has a good tool support and is easy to use and to set up.

Figure 3.4 depicts the MongoDB design we have chosen. Keep in mind, that MongoDB
is not a relational database like MySQL. Therefore, concepts like primary or foreign keys
or even a schema do not exist. Nevertheless, it is possible to link documents from different
or the same collection(s) in MongoDB, by saving the object id in the referencing field. We
used the Chen Database Notation [20] to visualize our design in Figure 3.4. But, we are
fully aware of the fact, that this might be confusing, as MongoDB does not use schemas.
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Figure 3.4.: Design of the used MongoDB. Chen Notation [20] is used, but there are no attributes displayed.

Nevertheless, it supports the explanation of the design of the database. Furthermore, we
did not display attributes, because the figure would be unclear otherwise.

The user collection is a separate collection used by the web application for the user man-
agement. Additionally, every user is assigned a role, which is directly connected with the
permissions for using the MongoDB (for further information refer to Section 4.2.3). The
prediction collection is used in our case study to show, how intermediate results can be
utilized by the webserver to create graphs or (in this case) evaluate the performance of a
defect prediction classifier (see Chapter 5). A project can have multiple prediction collec-
tions, which must satisfy a specified scheme (for further information refer to Section 5.4).
The rest of Figure 3.4 shows how the mined data is organized. A project has many revi-
sions, which can have many files. Keep in mind, that the mined data is changed-based,
which means, that we save file states instead of files. Hence, different file states from the
same file are saved in this collection. Nevertheless, they all refer to another revision. The
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same holds true for functions, methods and classes. Important to note is, that we save a
reference to the next state of the artifact in the current state of the artifact. Therefore, we can
trace the evolution of an artifact easily, by following these next references, till there is no
reference set. Furthermore, it is important to note, that files can have methods, functions,
or classes.

3.4. Analyze the Project - Make Experiments to Gain Insights

Out of the data we mine, we can answer questions, which typically arise if we examine
the evolution of a software project. E.g., how many files were changed from commit 2
to commit 70? Which files were moved in this time frame? Is the ownership of file X
changing? When does it change? How is the change coupling of class X? Furthermore, this
data can be used to conduct much more complex analysis, e.g., defect prediction research.
An example for this application is given in Chapter 5.

After the mining, the analysis of the mined data is performed. Java, Python or R are
often used languages in software project research. Therefore, our platform has the goal
to support these. Unfortunately, at the time of writing this thesis, the platform supports
only Java and Python. To perform analytics on our platform, the researcher first writes
their analysis program. Spark allows local testing of jobs without the need to run them on
the actual Hadoop cluster. Once the testing is completed, the researcher can upload and
execute the JAR or Python file to the platform using the web front-end. For the execution,
the Spark jobs are submitted to the Hadoop cluster, distributed among the nodes in the
cluster and processed in parallel. The Apache Hadoop cluster is communicating with the
MongoDB to gather all the needed mined data. It is possible to save the results in the
HDFS (see Section 2.2.2), which is then read out by the webserver. The saved results are
presented via the web-based GUI.

3.5. Cloud Deployment

As we mentioned above, both steps should be fast: the mining as well as the analysis step.
But especially the analysis step is time-critical, e.g., for a real time response on commit [83].
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Our platform is developed as a cloud platform. The aim was to develop it in a way, that
the deployment is as easy as possible. Furthermore, the deployment model is adaptive,
to allow changes based on the available computational resources. Therefore, we chose
DevOps technologies to provide scripts that fully automate this process. As described in
Section 2.6, the process is twofold: First, VMs have to be created and provisioned in our
cloud. Second, the created machines need to be configured.

We need two different inputs to execute these tasks: User credentials and machine spec-
ifications. The user credentials are given by the cloud provider. In our case, we used a
private cloud based on OpenStack. Table 3.2 shows the different parameter that need to be
configured by the user.

Furthermore, we need to specify, how the virtual machines are provisioned. This in-
cludes information about the node count, what kind of flavour the node should have and
also what access key is used to control the remote access to these machines. The flavour
defines the computational capabilities of the nodes (e.g., number of Central Processing
Unit (CPU)s, RAM and disk size) and is , in our case, defined in OpenStack.

Parameter Purpose
Username Identifier for the user, e.g. email address
Password Secret key only known to the user
Tenant Project identifier
Node Count Number of virtual machines
Node Flavor Computational capabilities of each node
Access Key Access key for remote control of the nodes

Table 3.2.: This Table shows the parameter, which the user needs to specify to use the provided cloud deployment scripts.
Based on: [48]

After the specification of these parameters, the user is able to call our Vagrant (see Sec-
tion 2.6.1) and Ansible (see Section 2.6.2) scripts to deploy our platform in a cloud envi-
ronment. Hence, the configuration effort is minimal. These scripts create the infrastructure
explained in Section 3.2. Generally, the platforms infrastructure consists of four differ-
ent parts: (1) webserver, (2) mining server, (3) MongoDB, and (4) Apache Hadoop cluster.
However, all these parts can and should be separated from each other for more efficiency
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and flexibility. For further information about the infrastructure and its configuration refer
to Section 4.5.
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The previous chapter introduced the conceptual design of our platform from a high-level
perspective without technical details. This chapter presents these details for each part of
the system. First, we give a detailed overview of our platform in Section 4.1. Section 4.2
describes the web-based GUI of our platform with all its possibilities, like the project man-
agement features (see Section 4.2.1), project analysis features (see Section 4.2.2), user man-
agement (see Section 4.2.3) and additional functionalities (see Section 4.2.4). Furthermore,
we illustrate in detail how projects are mined in Section 4.3, which includes the creation
of a DECENT model instance (see Section 4.3.1) and the writing of it into the MongoDB
(see Section 4.3.2). Additionally, we describe how the mined data is utilized to perform
analysis (see Section 4.4). In the last chapter, we present the technical details for the cloud
deployment using Vagrant and Ansible (see Section 4.5).

4.1. Platform Description

Figure 4.1 illustrates the platform with the technical details. Nevertheless, not all details
fit in this figure. Furthermore, we do not show the infrastructure here, only the connection
of the different used tools. Figure 4.1 shows the two basic tasks we have described ear-
lier in Chapter 3. On the one hand, the project mining and on the other hand the project
analysis. The researcher can choose, which task should be performed with our platform.
Nevertheless, if the researcher wants to analyse a project, the data must be mined before.
The mining process starts with the setup of the project. The platform only requires the
name, location to the git1 repository and used programming language of the project. At
the time of writing this thesis, the platform only supports git as VCS. Furthermore, it

1See: https://git-scm.com/.
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only supports Java, C, and C++ as programming languages, because the InFamix tool (see
Section 2.1) is able to parse only these languages. After the project is set up, it can be
mined. At first, the git repository is cloned. Then, different tools are used to extract facts
from this repository: CVSAnaly, FX-DuDe and FX-InFamix. These tools are introduced in
Section 2.1. The figure illustrates, which technologies are used to transform the results of
the different tools to EMF model instances. The results of CVSAnaly are processed with
Xtext2, Hibernate/Teeneo3 and ETL. FX-InFamix and FX-DuDe are working on revision
level. Therefore, each revision needs to be cloned. The results of FX-InFamix are processed
via Xtext and the results of FX-DuDe with ETL. The intermediate EMF model instances are
shown in the figure: MG, DAG and CFN are created out of the processing of the CVSAnaly
results, whereas FAMIX model instances are created with the processing of the FX-InFamix
results and the DUDE model instances with the processing of the FX-DuDe results. They
are all transformed and connected with each other via ETL. The result is the DECENT
model instance (see Section 2.1). The DECENT model is further processed via EOL: An-
other EMF model instance is generated, which is called DECENTMongo. As the last step,
the DECENTMongo model instance is processed via Morphia (see Section 2.4). Hence, the
results are written in the MongoDB.

After the project was mined, the researcher can execute the second basic task: The project
analysis. For this step, a JAR or Python file needs to be uploaded via the web interface.
In the background Apache Spark is used, which runs the analysis on a Apache Hadoop
cluster. The results of the mining can be used via Apache Spark and intermediate results
can be written in the MongoDB. Each part is described in more detail later in this chapter.

2See: https://eclipse.org/Xtext/.
3See: https://wiki.eclipse.org/Teneo/Hibernate.
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Figure 4.1.: Detailed overview of the platform. The infrastructure is not depicted. The focus lies on the connection of
different system parts. Rectangles indicate programs we use, rhombuses are different EMF models, that are
created. The @Revision shows, that these model instances are generated for each revision. The arrow labels
show what tooling and technology is used to create the EMF model instances.
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4.2. Graphical User Interface with Apache Spark Connection

This section describes the GUI, which has an Apache Spark connection. From an end-user
perspective, the web front-end is the central part of our platform. It is the only place where
users directly interact with the platform and the starting point for both, the mining and the
software analytics. We decided to build a web based GUI based on the Yii2 framework, be-
cause of the good implementation of the MVC design pattern, which allows easy extension
of applications. Furthermore, we use MongoDB (see Section 2.4) for user authentication.
The website runs on an Apache and at least PHP 5.4 is required. The decision to deploy
our platform online and provide users with a web front-end also resolves the problem of
distributing our platform, because interested users can simply visit the home page and do
not need to download and install a standalone application.

The different project management features are explained in Section 4.2.1. Project analysis
features are illustrated in Section 4.2.2. The user management is described in Section 4.2.3
and additional functionalities of the GUI are illustrated in Section 4.2.4.

4.2.1. Project Management Features

As described in Section 4.1 the projects need to be set up first. Figure 4.2 shows the inter-
face for adding a new project. The platform needs a minimum amount of information to
start the mining process, like the name, repository url and programming language. The
bugtracker location is not used at the moment. Further restrictions are explained in Sec-
tion 4.1. The actions, which are triggered by adding and mining a project, are explained in
detail in Section 4.3.

The platform is able to list all added projects, together with detailed information about
them like the mining progress. Figure 4.3 shows the list of projects, which the platform
offers. There, information about every project (e.g., repository url, when was it last pulled)
is displayed. Furthermore, the user can perform different actions for each project, like
delete the project (bin symbol), mine the data (arrow-down symbol) or show defect pre-
diction data (picture and arrow symbols) (further information about this feature is given
in Section 5.4). Additionally, there is the possibility to sort the grid and search for specific
information. Furthermore, we are able to backup projects, as well as show done backups
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Figure 4.2.: GUI - Adding a project. The figure shows, what information is needed to add a project in the platform. This
includes the name, repository url and the programming language. The bugtracker url is not used at the
moment.

to download it later on. Further information about the backup functionality is given in
Section 4.2.4. The last pulled attribute is not set at certain projects, because these projects
were imported using a DECENT importer. This tool is explained in detail in Section 4.3.1.

Furthermore, there is the possibility to view a project in detail. Figure 4.4 shows an
excerpt of the detailed view on a project. In this case, the project is k3b4. The interface
gives us the possibility to download log files, or even configure the project using the text
windows at the bottom of the page. For each step of the project processing (see Section 4.1)
there exist configuration possibilities.

4See: http://www.k3b.org/.
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Figure 4.3.: GUI - List of projects. The figure shows, how projects are displayed in the platform. Furthermore, it depicts
the different available actions (delete, mine, defect prediction).
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Figure 4.4.: GUI - Project detailed view. The figure shows, a detailed view of a project (in this case: k3b). There is
the possibility to configure each project by themselves over the web interface using the text windows, de-
picted at the bottom of the figure. Furthermore, we get a detailed view of the project and the possibility to
download log files, shown at the top of the figure.
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4.2.2. Project Analysis Features

The second step, after mining the software project, is the project analysis. After the re-
searcher wrote his analysis program (JAR or Python file), this program can be uploaded
via the web interface. Figure 4.5 shows the user interface for this action. The researcher
only needs to chose, if a JAR or Python file is uploaded. This must be specified, because if a
JAR file is uploaded, the platform needs to know the full class name, which should be exe-
cuted (e.g. de.smadap.wordcount.Run). Furthermore, the user can add additional Apache
Spark commands (e.g. number of executors) and additional program parameters, that his
uploaded program might need. What actions the upload progress triggers, is explained in
detail in Section 4.4.

After the analysis program, based on Apache Spark, was uploaded, the progress and
other information can be retrieved via the web interface. Figure 4.6 illustrates, how this
information is displayed to the user. The most relevant information is displayed in a grid
view. Additional information can be retrieved, by clicking on the eye on the left side.
Furthermore, we can sort the grid and search for specific information and there is the pos-
sibility to terminate an application via the web interface.

After the Spark job finished, the results can be retrieved. Figure 4.7 shows, how the
available results are displayed to the user. Each user has his own results directory. Every-
thing that is saved in the corresponding folder is displayed on this page. Hence, it does not
matter if the user saves files or whole folders. The user can chose what results to download
or delete. Further information is given in Section 4.4.
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Figure 4.5.: GUI - Spark submit. The figure shows, how Spark analysis programs are uploaded via the platforms web
interface. The user needs to specify, if a JAR or Python file is uploaded. Furthermore, the user can add
additional Apache Spark commands and program parameters.
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Figure 4.6.: GUI - Spark index. The figure shows, how different Spark jobs are displayed to the user.
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Figure 4.7.: GUI - Spark results. The figure shows, how the results are displayed to the user. Each user has his own
results, therefore only results saved in the corresponding user folder can be retrieved.

4.2.3. User Management

The platform implements Create, Read, Update, Delete (CRUD) user management func-
tionalities. Figure 4.8 shows, how the available users are displayed. The users are dis-
played in a grid view, which illustrates the most relevant information. Furthermore, there
exist the possibilities to view a user in detail (eye icon), edit a user (pencil icon) and delete
a user (bin icon). Additionally, new users can be added via the create user button.

Each user of our platform has a role that is assigned via the web interface. The role
specifies the permissions for both using the web interface, as well as accessing the Mon-
goDB. There are three different roles, which are compared in Table 4.1. The three defined
roles allow the separation between users who are allowed to trigger the mining of projects
and adapt the configuration of the platform (Admin role), users that are allowed to create
analytics that modify the MongoDB (AdvancedUser role) and users that can only create an-
alytics that access the MongoDB without write privileges (User role). This can be useful if
students should work with the platform to make sure that they cannot delete or overwrite
data by mistake.
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Figure 4.8.: GUI - User management. The figure shows, how users are displayed. Furthermore, it shows the different
available actions: View a user in detail (eye icon), edit a user (pencil icon), delete a user (bin icon) and
create a new user (button above the grid).

Role Name Web Interface Permissions MongoDB Permissions
Admin All All

AdvancedUser All, except: Changing configuration
files, mine, delete or backup projects,
manage user, terminate Spark appli-
cations. Only fully mined projects are
shown.

read, write, delete

User All, except: Changing configuration
files, mine, delete or backup projects,
manage user, terminate Spark appli-
cations. Only fully mined projects are
shown.

read

Table 4.1.: Comparison of user roles and their permissions in the web interface as well as in the MongoDB.
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4.2.4. Additional Functionalities

Besides project management, project analysis and user management functionalities, there
are other functions offered by the web interface, which are important for conducting re-
search. First, it provides a backup functionality. The interface for this function is shown in
Figure 4.9. The user needs to provide a backup name and must select, which collections
should be backed up. A timestamp is added to the backup name and the resulting backup
is saved as .tar.gz on the webserver. This feature is especially useful for the preparation of
a publication, where a fixed data set is required which may not be changed afterwards.

Figure 4.10 illustrates, how backups can be managed. The user need to select the backup
and can either download the backup or delete it via the corresponding buttons.

Furthermore, there exist the possibility to configure the connection to the MongoDB via
the web interface. Figure 4.11 depicts, how the interface for this action looks like. It is im-
portant to note, that after changing the MongoDB connection, the administrator must rerun
the MongoDB migration with the corresponding collection names, explained in Section 4.5.
In the background, the configuration is saved as an XML file, because the DECENTMongo-
DBConverter (see Section 4.3.2) also needs this information.

Moreover, the web front-end was extended to show some analysis results for each project
directly, instead of having the results only available as download. This was performed as
part of the analytics example we provided to show how the platform can be modified to
directly put results into operation and make them actionable. For further information, refer
to Section 5.4.
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Figure 4.9.: GUI - Backup. The figure shows the backup functionality provided by the platform. The user can specify a
backup name and the collections, which should be backed up.

Figure 4.10.: GUI - Backup management. The figure shows the backup management functionality provided by the
platform.
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Figure 4.11.: GUI - MongoDB configuration management. The figure shows the MongoDB configuration management
functionality provided by the platform.
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4.3. Project Mining

As described in Section 4.2, before a project can be mined it needs to be set up. The setup
executes a shell script, which does the following steps.

1. Create projects directory, if it does not exist. In this directory, all project data is saved
(e.g. intermediate EMF model instances).

2. Create needed subdirectory for the project, if these do not exist (e.g. log directory).

3. Setup CVSAanaly database: CVSAanaly saves the results into a MySQL database.
This database needs to be set up beforehand.

4. Setup DUDE database: DuDe saves the results into a MySQL database. This database
needs to be set up beforehand.

5. Setup tool configrations: During the mining of the project, several tools for convert-
ing intermediate results are used. Each of these tools has its own configuration file.
These files need to be adapted to the current project (e.g., set project name in con-
figuration file) and copied to the project folder. This includes the RT, MX and Mel
configuration files. For further information about these tools, refer to Section 4.3.1.

After the setup is done, the project can be mined. If the user decides to mine a project,
another shell script is executed. First, a DECENT model instance is created, which is then
transformed into another EMF model instance (called DECENTMongo model) and after
that written into the MongoDB. The DECENT creation step is explained in detail in Section
4.3.1. The conversion of the DECENT model and the saving of the results in the MongoDB
is illustrated in Section 4.3.2.

4.3.1. DECENT Creation

As it is described above, one fundamental step in the mining process is the creation of the
DECENT model file. DECENT is introduced in Section 2.1.

After the project was set up, the user can start the mining process. This triggers the
execution of a bash script on the webserver. Important to note is, that we must distinguish
between a project, which was mined before and a new project. If the project was mined
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before, we do not need to copy the different configuration files described above and the
whole setup process does not need to run completely.

Listing 4.1 shows an excerpt of the used bash script. It illustrates how the different
phases in the mining process are executed: The first step is to write the current phase,
which is executed, to the log file (see lines 2 and 13). This ensures, that we can track back
problems, if they occur. After that, the corresponding phase is performed. Hence, another
bash script is executed, which contains commands specific for this phase (see lines 3 and
14). Afterwards, the main script waits, till the phase script is completed (see lines 4 and
15). A plain sanity check is performed, which checks either, if the programs return value
is not zero (see lines 5-8) or if the EMF model file, which should be created, was created
(see lines 16-20). If the sanity check fails, an error string is written to the state file (see
lines 6 and 18), which contains the different states completed by the project. With the
help of this file, the progress of the project can be shown in the GUI (see Section 4.2.1).
Afterwards, a timestamp and a message is written to the log file (see lines 9 and 21) and a
phase completed string is written to the state file (see lines 10 and 22) to make clear, that
this phase was successfully executed.

1 # Run cvsanaly
2 echo "Run CVSAnaly . . . " >> $LOGPATH
3 $DEPLOYMENT/ s c r i p t s /cvsautomate $DATABASE $DEPLOYMENT/ p r o j e c t s /$PROJECTNAME/

g i t >> $LOGPATH 2>&1
4 wait
5 i f [ [ $ ? −ne 0 ] ] ; then
6 echo " : : ! e r r o r ! : : " >> $STATEPATH
7 e x i t 1
8 f i
9 echo " $ ( date +%d.%m.%Y−%T ) CVSAnaly completed " >> $LOGPATH

10 echo " $ ( date +%d.%m.%Y−%T ) : : ! cvsanalycomplete ! : : " >> $STATEPATH

12 # Run MG
13 echo "Run RT−MG. . . " >> $LOGPATH
14 $DEPLOYMENT/ s c r i p t s /run−r t−changed . sh $PROJECTNAME >> $LOGPATH 2>&1
15 wait
16 i f [ ! −e "$OUTPUTPATH/model .mg" ]
17 then
18 echo " : : ! e r r o r ! : : " >> $STATEPATH
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19 e x i t 1
20 f i
21 echo " $ ( date +%d.%m.%Y−%T ) Run MG completed " >> $LOGPATH
22 echo " $ ( date +%d.%m.%Y−%T ) : : ! runmgcomplete ! : : " >> $STATEPATH

Listing 4.1: Excerpt of the project mining bash script.

It is important to note, that we create a separate log file for the InFamix step, because the
InFamix log file can get huge, depending on the size of the project and the number of com-
mits. Furthermore, we developed a DECENT importer, which gets a previously created
DECENT file as input and executes only the last two steps. In Table 4.2, we shortly sum-
marize the different steps and their created output. DECENT provides several programs,
which are used for converting the extracted facts and creating a DECENT model instance.
The resource tools (RT) program is used to convert different facts assets (e.g. the MySQL
database created by CVSAnaly) into EMF model instances. The MX tools provided by DE-
CENT is a newer version of the FX tools, described in Section 2.1. The MEL tools are used
for the integration step, where the different facts model instances are combined into one
DECENT model instance.

Phase Description Input Output

Pull project Executes git clone on project
repository location

Repository loca-
tion

Repository data

CVSAnaly Executes CVSAnaly (see Sec-
tion 2.1) on the before cloned
project data

Cloned project
data

MySQL database,
with project
history data
(e.g. different
revisions and
actions)

RT-MG Uses the resource tools pro-
vided by DECENT to create
an intermediate EMF model

CVSAnaly
MySQL database

MG model in-
stance
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MX-Famix Uses the mx tools provided
by DECENT to run InFamix
on each revision. Checks out
each revision to run InFamix
on it

Revisions MSE files5, for
each revision

RT-Famix Uses the resource tools pro-
vided by DECENT to create
an intermediate EMF model

MSE InFamix
files

FAMIX model in-
stance

RT-DAG Uses the resource tools pro-
vided by DECENT to create
an intermediate EMF model
in two steps (generation of
DAGX, translation to DAG)

Cloned project
data, DAGX

DAG, DAGX

MX-DuDe Uses the mx tools provided
by DECENT to run DuDe on
each revision

Revisions Dude files

RT-DuDe Uses the resource tools pro-
vided by DECENT to create
an intermediate EMF model

Dude files DUDE model in-
stance

Mel-
Workflow

Uses the mel tools provided
by DECENT to link and pro-
cess all existent intermediate
model files to create a DE-
CENT file

MG, FAMIX,
DAG, DAGX and
DUDE models

DECENT, CFA

Decent to
DECENT-
Mongo

Uses the DECENTMongoDB-
Converter (see Section 4.3.2)
to create a DECENTMongo
model file out of the DE-
CENT model file

DECENT model
file

DECENTMongo
model file

5MSE is a specific file format used by Moose. See: http://www.moosetechnology.org/.
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DECENT-
Mongo to
MongoDB

Uses the DECENTMongo-
DBConverter to write the
DECENTMongo model file,
after some processing, in the
MongoDB

DECENTMongo
file

MongoDB docu-
ments

Table 4.2.: Different phases in the project mining process, with a short description and their in- and output.

4.3.2. DECENTMongoDBConverter

We developed a tool called "DECENTMongoDBConverter", which is used to write the con-
tents of a DECENT file (see Section 2.1) into a MongoDB (see Section 2.4). As intermediate
result, we create a DECENTMongo model instance, which is based on EMF. We decided
for this approach, because creating an EMF model via EOL is straight forward. EOL pro-
vides a querying language and therefore, we can query the data that we want to save in
our DECENTMongo model file easily. Therefore, we designed our DECENTMongo model
similar to our MongoDB design (see Section 3.3.2). The design of our DECENTMongo
model is depicted in Figure 4.12.
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Figure 4.12.: Design of the DECENTMongo model.

The second step is to write the contents of the DECENTMongo model into the MongoDB.
For this, we extended our DECENTMongoDBConverter: The DECENTMongo model is
read using EMF and the contents are converted into Java objects. These Java objects are
annotated with the Morphia framework (see Section 2.4). This enables an easy writing of
the contents to the MongoDB. We have chosen Morphia for this task, because it has two
advantages: First, we can use Morphia to query data from the MongoDB. The return value
is a Java object, which possesses the values of the retrieved document in the MongoDB.
Hence, we can work with these Java object, like normal objects but in the background
these objects are connected to the MongoDB. Secondly, the handling of the connection to
the MongoDB is easy via Morphia.
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4.4. Utilize the Data with Apache Spark

We followed our design presented in Section 3.4. The implementation is depicted in Figure
4.13. The user writes the analysis program, based on Apache Spark, which then can be up-
loaded to the webserver, using an upload form (see Section 4.2.2). The front-end allows to
add Spark arguments as well as program arguments. This allows the creation of parame-
terizable analytic jobs, e.g., to define the name of the project to be analysed using a program
argument. In the background, Apache Sparks "spark-submit" script is invoked, with the
uploaded program and given parameters. Hence, an Apache Spark job is submitted to the
Apache Hadoop cluster. After that, the JAR or Python file is distributed among the nodes
in the cluster and processed in parallel. Apache Spark uses RDDs for this parallelization
step, which are explained in Section 2.3. Information about all jobs, both running, as well
as completed, are retrieved via the REST API of Apache Hadoop. Hence, we implemented
a connection to the Apache Hadoop REST API to display the retrieved information in a
grid (see Section 4.2.2). The REST API does not provide all available information about
an application. But it is possible to directly access the Apache Hadoop web interface, if
the displayed information is not enough. Furthermore, we implemented the possibility to
terminate a running job directly via the web interface.

Figure 4.13.: Implementation of the analysis based on Apache Spark and Apache Hadoop. The MongoDB as well as
Apache Spark are running on the webserver.

The uploaded files are temporarily saved in the Yii application structure. We created a
cronjob, which is executed at midnight every day, that deletes this upload folder. Results
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Figure 4.14.: HDFS folder structure for the user "spark".

of the Spark jobs can be saved in the MongoDB (if the user has sufficient rights, see Sec-
tion 4.2.3) or in the HDFS. Every user of the platform has her own directory, where data
can be saved. The structure of this is depicted in Figure 4.14. In the system, there exist an
Apache Spark user called "spark". This user is used for all the actions performed by the
webserver. Furthermore, this user has its own HDFS folder. A sub directory of his HDFS
home folder is the folder called "useroutputs". There, every user that is created via the web
interface (and has submitted a Spark job) has its own directory. The user has full control
over his directory. Hence, the user can delete, download and save new files to it (see Sec-
tion 4.2.2). If the user wants to download more than one file, the files are automatically
packed into a tar.gz and a timestamp is added. Nevertheless, if the user saves his outputs
(e.g. a text file) to the wrong location, there is no way to download or delete this file by this
user.
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4.5. Cloud Deployment

As it is explained in Section 3.5, we want to achieve, that the whole infrastructure can be set
up with minimal user interaction in a cloud environment. To achieve this, we use the tools
Vagrant (see Section 2.6.1) for the creation of the VMs in the cloud and Ansible (see Sec-
tion 2.6.2) for the VMs configuration. In order to be able to deploy our platform, the cloud
environment must support Vagrant and Ansible. Usually, a cloud environment provides
dedicated configuration servers, to which Vagrant and Ansible scripts can be uploaded. In
our case, this is a dedicated server with a connection to the OpenStack installation of our
cloud. To run the deployment from the dedicated server, only two bash commands must
be called: vagrant up –no-provision for the creation of the VMs and vagrant provision for their
configuration.

Figure 4.15 shows the infrastructure after the deployment. This figure does not show the
communication flow in the Hadoop Cluster. As explained in Section 3.5, the four differ-
ent parts of our platform should be separated. However, we were not able to deploy our
platform this way, as we only have limited resources available. Nevertheless, our deploy-
ment scripts can be easily adapted to achieve the separation of the platform parts. A more
efficient design is presented in Chapter 7.

Note, that if we describing Apache Hadoop services in this section, we will write it in
camel case (e.g. NameNode). If we mention our hosts that we have created, we write it in
lower case (e.g. namenode).
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Figure 4.15.: Infrastructure after Vagrant and Ansible are called. The communication flow in the cluster itself is not
depicted.

4.5.1. Creation of VMs

We use Vagrant for the creation and provisioning of the required VMs for running our
platform in a given cloud environment. We adapted the settings used in [48]. The user can
define the amount of slaves, which should be present in the Hadoop cluster. Furthermore,
the so-called flavours can be defined. Listing 4.2 shows how the slaves are instantiated
using Vagrant. Fore each iteration, a VM is defined via "config.vm.define". Furthermore,
we directly assign a hostname to it.

1 SLAVES_COUNT. times do | i |
2 conf ig .vm. def ine " s lave #{ i +1} " do |s lave|
3 s lave .vm. hostname = " s lave #{ i +1} "
4 end
5 end

Listing 4.2: Slaves definition in the used Vagrantfile

Additionally to the slaves, we need to create a namenode and a resourcemanager for the
Hadoop cluster. Furthermore, the webserver needs to be created and provisioned. It is to
note, that at our current setup the webserver needs to have a huge amount of RAM, as the
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mining process is executed on it and the created EMF models need to fit completely into
the main memory.

Once the VMs are created, they must be provisioned, i.e., instantiated with an operating
system. Vagrant allows the selection of predefined images of operating systems which can
be downloaded for this purpose. Once the provisioning is also performed, we have the
required VMs up and running with an operating system, but no other software installed
yet, as this is not supported by Vagrant.

Therefore, Vagrant calls Ansible to configure the different nodes. Listing 4.3 shows how
Vagrant and Ansible can interact with each other. This listing illustrates, how the resource-
manager is prepared for the configuration via Ansible: First, we need to configure Ansible
(see lines 5-8). Important to note is, that we need to specify the playbook, which should be
used for the configuration (see line 7). Furthermore, different hosts are grouped together
(see lines 11-16). Hence, they can be referenced with the given names in the playbook (e.g.,
"Slaves" references all created slave VMs). The full source code is given in appendix A.

1 conf ig .vm. def ine " resourcemanager " do |resourcemanager|
2 resourcemanager .vm. hostname = " resourcemanager "

4 resourcemanager .vm. provis ion : a n s i b l e do | a n s i b l e |
5 a n s i b l e . verbose = " v "
6 a n s i b l e . sudo = true
7 a n s i b l e . playbook = " deployment/ s i t e . yml "
8 a n s i b l e . l i m i t = " a l l "

10 s l a v e s = ( 1 . . SLAVES_COUNT) . to_a . map {| id| " s lave #{ id } " }
11 a n s i b l e . groups = {
12 "NameNode" => [ " namenode " ] ,
13 " ResourceManager " => [ " resourcemanager " ] ,
14 " S laves " => slaves ,
15 " Webserver " => [ " webserver " ]
16 }
17 end
18 end

Listing 4.3: Vagrant-Ansible interaction
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4.5.2. VM Configuration

As stated above, Ansible is used for the configuration. Ansible can be called using Vagrant
and allows the definition of so-called playbooks, i.e., scripts that define which software
should be installed in a VM and how the software should be configured. It is possible to
assign different playbooks (or tasks in playbooks) to different created groups. Hence, not
every playbook is executed by every group. Table 4.3 gives an overview of the different
playbooks and their purpose.

Playbook Purpose
common Installation of required base software
hadoop_common Hadoop download and system preparation
configuration Hadoop configuration
format_hdfs HDFS formatting
services Hadoop services start/restart
setup Creates the webserver

Table 4.3.: Ansible playbooks for the cluster deployment. Based on [48].

The configuration of our platform requires six different playbooks. Each playbook serves
a different role for the configuration of the platforms infrastructure. The playbooks are the
following:

• common: Installs required base software, which is needed on every node in the clus-
ter (e.g. Java, Network File System (NFS)).

• hadoop_common: Downloads a specified Hadoop distribution (for our experiments
we used Apache Hadoop 2.6) and creates the Hadoop user on every node. This is
also required on the webserver, because Apache Spark needs access to Hadoop.

• configuration: Configures Apache Hadoop on every node. It also makes the HDFS
available via a Portable Operating System Interface (POSIX) compatible file system
using a NFS wrapper.

• format_hdfs: Is executed on the namenode. Formats the HDFS.
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Service Hosts
NameNode namenode
ResourceManager (YARN) resourcemanager
JobHistoryServer resourcemanager
Portmap (required for NFS wrapper) namenode
NFS Wrapper namenode
NodeManager All slaves
DataNode All nodes
Apache2 webserver
MongoDB webserver
MySQL webserver

Table 4.4.: Services running on different node types. Based on [48].

• services: Is executed on each node. Different needed services, like the NodeMan-
ager on the slaves or YARN on the resourcemanager are started. Table 4.4 gives an
overview of the different services, which run on the different nodes.

• setup: Only the webserver executes this playbook. It contains tasks, like the installa-
tion of an Apache2, creation of the site configuration for the web interface, installa-
tion of needed software (e.g. GIT, PHP5, CURL, MongoDB, MySQL, Apache Spark),
installation of plug-ins (e.g. PHP-MongoDB extension) and execution of a Yii mi-
gration. The purpose of the Yii migration is the instantiation of the MongoDB user
collection with default values. Hence, after the instantiation it is possible to log in
into the web interface with the specified default users.
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In this chapter, we examine the practicability of our platform. We use our platform to mine
and analyse different software projects. First, we evaluate the mining part of the platform
by cloning multiple projects and collecting their data. We developed a sample analysis
in which we show how defect prediction models can be created for the previously mined
projects. Moreover, we adapted the platforms front-end to directly show the results of our
sample analysis in order to allow quick feedback to researchers and developers interests in
such analysis and to provide a major step towards making the analysis actionable.

First, the test environment is described in Section 5.1. Then we introduce the projects
we have chosen for our case studies in Section 5.2. In Section 5.3 we evaluate the mining
process of these projects. In the last section (see Section 5.4), we conduct defect prediction
research on the mined projects and illustrate, how the results are presented via the web
interface.

5.1. Environment

Currently, we are running our platform in a small cloud that we locally administrate within
our research group1. The cloud is based on OpenStack. As it is explained in Section 4.5,
we need to specify the flavour for the machines, as well as how many slaves our Apache
Hadoop cluster should include. Table 5.1 shows the created machines and their specifica-
tions.

The webserver needs to have a huge amount of RAM, because it also performs the min-
ing and the EMF models created during the mining must fit completely in the main mem-

1See: http://www.swe.informatik.uni-goettingen.de/.
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Hostname Virtual CPUs Memory Storage Architecture
namenode 2 4GB 40GB 64bit
resourcemanager 2 4GB 40GB 64bit
slave1 2 4GB 40GB 64bit
slave2 2 4GB 40GB 64bit
webserver 8 16GB 160GB 64bit

Table 5.1.: Infrastructure of our deployed case study environment.

Software Version
Apache Hadoop 2.6.0
Ansible 1.9.2
Vagrant 1.7.2
Java OpenJDK 64-bit 1.7.0_79
Linux Ubuntu Server 14.04
MySQL 5.5.43
MongoDB 3.0.4
Apache2 2.4.7
PHP 5.5.9
Apache Spark 1.4.0
Yii 2.0.5

Table 5.2.: Software versions of our deployed case study environment.

ory. Furthermore, Table 5.2 lists all software that we have used, which are directly relevant
for our platform. On which node the software is installed, is explained in Section 4.5.

5.2. Project Descriptions

To evaluate if the mining of projects works as desired, we selected some projects from
GitHub2. We did not follow any specific methodology for the selection of projects, but
selected 20 projects randomly by using the "explore" function of GitHub. Furthermore, we
checked, if their programming language is Java or C/C++, as this is the only requirement

2See: https://github.com/.
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of our platform. Table 5.3 lists the mined projects, including the programming language,
the number of commits, the number of files in the repository, the size of the repository, and
a very brief project description. The number of files and the size are reported for the latest
revision of the repository because we assume, that the last revision is the biggest revision
with the most files. But this assumption might be wrong for some projects. Nevertheless,
we only want to illustrate the approximate size of the used projects to make it possible
to set the size of the project in relation to the duration of the mining and analysis of it
evaluated in Section 5.3 and 5.4.

Project Lang. #Commits Size #Files Description

cursynth [84] C++ 219 3 MB 185 MIDI enabled, subtractive
synthesizer, for the termi-
nal.

cxxnet [28] C++ 852 4 MB 173 Concise, distributed deep
learning framework.

elasticsearch-
hadoop [35]

Java 1243 9 MB 576 Elasticsearch real-time
search and analytics na-
tively integrated with
Hadoop.

fatal [36] C++ 401 3 MB 141 Library for fast prototyp-
ing of software in C++.

guice [46] Java 1442 89 MB 713 Dependency injection
framework for Java.

HackerNews
[64]

Java 12 1 MB 78 Pulls top stories from the
HackerNews API for An-
droid.

libxcam [1] C++ 250 3 MB 242 Project, with the aim to ex-
tend camera features.

libyami [2] C 487 4 MB 248 Library for media solutions
on Linux.

Minesweeper
[65]

Java 65 7 MB 207 Minesweeper game for An-
droid.
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mxnet [29] C++ 236 1 MB 124 Combines ideas from
projects for machine
learning.

oclint [78] C++ 733 3 MB 349 Static source code analysis
tool.

ohmu [47] C++ 226 3 MB 185 Compiler intermediate lan-
guage for static analysis.

openage [81] C++ 1761 8 MB 560 Project, which clones Age
of Empires II.

oryx [22] Java 372 48 MB 537 A real-time large-scale ma-
chine learning infrastruc-
ture.

osquery [37] C++ 2208 9 MB 555 Operating system instru-
mentation framework.

passivedns
[40]

C 220 1 MB 50 Network sniffer, which
logs DNS server replies.

SMSSync [85] Java 1395 40 MB 557 SMS gateway for Android.

swift [38] Java 496 8 MB 427 Annotation-based Java li-
brary for Thrift.

wds [3] C++ 238 3 MB 193 Libraries for building
Miracast/WiDi-enabled
applications.

xgboost [30] C++ 1847 8 MB 373 Large-scale, distributed
gradient boosting library.

Table 5.3.: Information about the mined projects.

5.3. Mining the Projects

The mining of the projects was very time intensive. For each of the selected projects, we
triggered the mining via the web front-end of our platform, as it is described in Section
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4.2.1. We measured how long the different steps of the mining process took and recorded
if we encountered problems. Figure 5.1 shows how long each phase took to complete for
each project. The differences in the overall runtime between the projects are a result of
the differences in project size, number of files, and number of commits. Even though the
mining is only runnning on a single core of the webserver, the largest project took about
one and a half days to mine. Most time is consumed by the collection of the metric data
with MX-Famix and the DECENTMongoDBConverter. There are two outliers, where the
runtime is consumed differently. The first is guice, where the addition of the diffs in the RT-
MG step consumes most of the runtime. The second outlier is the oryx project, for which
the analysis of the repository itself consumed the most time. When we investigated this,
we determined that CVSAnaly stopped working for a while, but then simply resumed as if
nothing happened. Upon further investigation we determined that this was an issue with
CVSAnaly due to a race condition in the implementation.

For Mahout3, the mining simply stopped due to a failure of InFamix. InFamix did not
throw any errors, it just stopped working. Therefore, the process did not finish. We were
not able to track down the problem. But besides this incident, there were no other fail-
ures in mining for the projects that we have tested. But, during our tests we faced some
limitations, which are described in detail in Chapter 7.

3See: https://github.com/apache/mahout.
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Figure 5.1.: Evaluation of the performance of the mining process. The mining was performed on the webserver. One core
and 12 GB RAM were used at peak for this process.
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5.4. Application Example: Defect Prediction

Defect prediction is an important research topic nowadays (see [53, 93]). It is used to iden-
tify defect-prone entities (e.g. source code files) in advance. Typically, defect prediction
models use a training set, which contains various measures (e.g. code metrics) of available
entities and the history of the entities defect proneness. The prediction model is fit to the
training set. Afterwards, the model is used to predict defects of entities in the future. This
preselection of entities, which most likely contain a bug, is done, as budget, people and
time, are often limited in development organizations and therefore only some of the code
can be tested before releasing it [76].

Therefore, we created different classifier with different metrics for the mined projects to
predict bugs in the mined data. We used our platform to execute the analysis. The con-
ducted defect prediction research is not designed to have the highest performance possible
or implement a very complex defect prediction scheme. Instead, we want to demonstrate
how the different data offered by our platform can be used and combined for an analytic
goal. We use defect prediction to figure out, which files of a commit are most likely to
contain a bug. It is important to note, that we only look at file artifacts. Therefore, we do
not use classes, methods or functions for our application example.

First, we explain how we have chosen our training and test data (see Section 5.4.1). In
Section 5.4.2, we describe our classification models in detail. Furthermore, we describe one
analysis program for building one of these classifier as an example in detail in Section 5.4.3.
At last, the results of our defect prediction models are presented in Section 5.4.4.

5.4.1. Training and Test Data

We are using a within-project defect prediction approach [76]. Therefore, we built our de-
fect prediction model on the past of a project and evaluate it on later revisions (of the same
project). Hence, data from other projects are not used during the training of a prediction
model. To select the training and test data within a project, we took a pattern from [83]:
We leave a short gap in the beginning, i.e., we are excluding the first commits of a project,
because the change patterns may not be stable in the beginning [52, 61]. We take the next
commits for training, then we leave a gap, and then we use the next period of the project
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to evaluate the prediction model. Moreover, we do not consider all commits until the end
of the project, but leave another gap here, because this data is fault-prone, as there was
less time for the identification of bugs. We use the information from the origin analysis
[44] of DECENT, which is based on the bug labels assigned by CVSAnaly’s BugFixMessage
extension. This information is already contained in the data through our mining process.

This does not apply to all projects, as the lifetime of some projects that we have mined
is less than three years. Therefore, we did not exclude the first commits for these projects.
Furthermore, we cut out the last half of commits for those projects (instead of three years),
as we do not have any data about bug fixing times available. Additionally, we exclude
the project "HackerNews", as it only has 12 commits. Hence, there is not enough data to
perform defect prediction analysis.

5.4.2. Classification Models

We created four different classification models with the Mllib of Spark, which use different
metrics provided by our platform. Training defect prediction classifier based on software
metrics is a commonly used method in research [19].

• CL1: The first classification model is based only on change and static source code
metrics. Using these metrics as input, we trained a binary logistc regression model
for the classification.

• CL2: The second classification model is based on change, static source code and social
metrics. Using these metrics as input, we trained a random forest for the classifica-
tion. In the literature, we know only one example where all three kinds of metrics
were combined, however, this was not in the context of defect prediction, but vulner-
ability prediction [82].

• CL3: The third classification model is based on only on the diff characteristic for
text classification. Diff is calculated by the differences between the last state and the
actual state of the artifact. Hence, all changed lines (removed or added) are present in
the diff. We calculate the tf-idf [77] for the different diffs and use this as classification
metric. Based on this metric, we trained a naive bayed classifier for the classification
into defect and non-defect prone files.
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• CL4: The fourth classification model is a combination of CL2 and CL3. It was created
to demonstrate, that our platform allows the combined analysis based on software
metrics and text analysis. In the third model we internally train three different clas-
sifier: Logistic regression and random forest, which are both trained with change
and social metrics and a naïve bayes classifier, which is trained with the tf-idf value
described above. Then we use an ensemble learning method called bagging [88] to
determine the overall classification. All three classifier classify an instance. Then, we
use the majority vote of those three internal models to determine the overall classifi-
cation of the instance.

We have chosen logistic regression, random forest and naïve bayes as classifier, because
they were available in Sparks Mllib and they are often used in the field of defect predic-
tion. The results of our classification are written back to the MongoDB in a new collection
(for further information refer to Section 5.4.3). Through storing the analysis results in the
database back-end, we enrich the database with more information that was not gained
through the mining directly, but rather with advanced software analytics based on our
platform itself. Therefore, our platform can feed itself with newly created data. Further-
more, the newly created collections are used to operationalize our software analytics ap-
proach: Our web interface is able to visualize prediction results (for further information
refer to Section 5.4.4).

5.4.3. Description of a used Apache Spark Program

As an example, we explain our Apache Spark analysis program for creating classifier CL1.
The full source code can be found in Appendix B. The first step is the creation of a Spark
context (see lines 102, 103). This context is needed, to specify the connection to Apache
Spark. The next step, as we are using deep-spark introduced in Section 2.4, is to create
a deep mongo config (see lines 105-117). Together with the Spark context, we can specify
what data should be queried and which data of a document should be returned. We created
our analysis program in a way, that it needs the following parameter to work:

1. project name: The name of the project to analyse, like it was specified in the web
GUI.
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2. training begin commit id: Specifies, on which commit id the training of the classifier
begins.

3. training end commit id: Specifies, on which commit id the training of the classifier
ends.

4. classification start commit id: Specifies, on which commit it the classification of the
classifier starts.

5. classification end commit id: Specifies, on which commit it the classification of the
classifier ends.

6. classifier name: Specifies the name of classifier/analysis project. This is important
for displaying the information in the web interface. Further details are given below.

The next step is the sampling of the training data (see lines 119-120). This is done, be-
cause most of the data is highly unbalanced. Hence, there are a lot more non bug-prone
instances than bug-prone instances. If we do not sample our training data, the classifier
will be strongly influenced by this imbalance problem. After that, we need to preprocess
the data. Therefore, we need to create labeledPoints, which is a class used by Apache Spark
to train and evaluate classifier (see lines 131-189). We use the map function, which gets an
input (in this case Cells) and creates an output via a specified function. As next step, we
create the classifier (in this case a logistic regression classifier, see line 195) and get the clas-
sification data (see lines 197 - 219), preprocess it in the same way (see lines 228 - 278) and
evaluate our classifier (see lines 281 - 316).

Listing 5.1 illustrates, how we create a RDD of Cells via the map function, which contains
the prediction (see lines 10 and 14) and the corresponding file id (see lines 8 and 13). We
create this RDD, because we want to read out these information later on via the webserver.
Furthermore, later in the program, we also calculate True Negatives (TN), True Positives
(TP), False Negatives (FN), and False Positives (FP) and save them in this RDD as well. As
last step, we save this RDD in the MongoDB.

1 // Create p r e d i c t i o n s e t f o r mongodb
2 JavaRDD<Cel ls > idandlabel = c l a s s i f i c a t i o n D a t a . map(
3 new Function <Map<Str ing , LabeledPoint > , Cel ls > ( ) {

5 publ ic C e l l s c a l l (Map<Str ing , LabeledPoint > map) {
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7 // Get l a b e l e d p o i n t
8 S t r i n g id = ( S t r i n g ) map . keySet ( ) . toArray ( ) [ 0 ] ;
9 LabeledPoint point = map . get ( id ) ;

10 Double p r e d i c t i o n = model . p r e d i c t ( point . f e a t u r e s ( ) ) ;

12 C e l l s r e s u l t = new C e l l s ( ) ;
13 r e s u l t . add ( C e l l . c r e a t e ( " f i l e I d " , id ) ) ;
14 r e s u l t . add ( C e l l . c r e a t e ( " p r e d i c t i o n " , getLabelForDouble ( p r e d i c t i o n ) ) ) ;

16 re turn r e s u l t ;
17 }
18 }
19 ) ;

Listing 5.1: Computation of raw scores on test set and creation of a RDD which is to be saved in the MongoDB.

Important to note is, that the collection that is created follows a specified naming scheme.
The scheme is "prediction_<projectname>_<name>". <projectname> is substituted by the
project name given as input for this program and <name> is substituted by the classifier
name given as input. Furthermore, it is important to note, that if we run the program with
the same input twice, it will delete the existing collection first and create a new one with
its results.

5.4.4. Results

Figures 5.2 - 5.4 depict the seconds till the classifier were build and evaluated by Spark.
Figure 5.2 puts this into relation to the number of commits of the projects. Whereas Figure
5.3 puts the time till the classifier were created and evaluated in relation to the project size
and Figure 5.4 uses the number of files as factor. These figures illustrate, that the time
till the classifier were created and evaluated does not raise with bigger projects (bigger in
terms of number of commits, files or size of the project), but we can identify a nearly linear
trend. The peak for this task is at about 2 minutes for the most complex classifier we have
created.
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Figure 5.2.: Evaluation of the performance of the analysis process using Apache Spark for the chosen projects. The
figure depicts the seconds till the classifier were build and evaluated by Apache Spark. This time is put into
relation to the number of commits.
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Figure 5.3.: Evaluation of the performance of the analysis process using Apache Spark for the chosen projects. The
figure depicts the seconds till the classifier were build and evaluated by Apache Spark. This Time is put into
relation to the projects size.
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Figure 5.4.: Evaluation of the performance of the analysis process using Apache Spark for the chosen projects. The
figure depicts the seconds till the classifier were build and evaluated by Apache Spark. This time is put into
relation to the projects number of files.

The collections, which were newly created due to our Spark programs, can be read out
by the web interface. What classifier are available for a project is illustrated in the project
grid in the column "prediction collections" (see Section 4.2.1). To show how our platform
can be used for reporting tasks, we implemented several functions:

• Zoomable graphs that depict the regions of the project used for training and test-
ing. Furthermore, these graph show how many software artifacts are actually defect-
prone according to the data, and how many are predicted as defect-prone, as well as
the differences between the prediction and the actual values.

• We visualize a confidence cut, i.e., the line after which we are not sure if the bug
labels in the data are correct, due to a small number of commits afterwards. Tan et
al. [83] suggest, that this cut is chosen in a way, that the time from the cut till the
last commit is the average bug fixing time. As this data is currently not available,
we have chosen a time span of three years based on [58]. Additionally, the platform
displays what data was used for training the classifier and from which commit the
classification starts.
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Figure 5.5.: Overview of file-Level bugs for the project guice. The x-axis shows the commit date, whereas the y-axis
illustrates the number of defects. There are two graphs in the figure: The black graph shows the number
of changed files, whereas the blue graph illustrates the number of defects per revision. Furthermore, the
commit message of the commit number 1309 is shown, because the user clicked on the corresponding point
in the graph.

• Classifier can be compared with each other. Either, if more than two classifier are
chosen in tabular form (see Figure 5.6), or if two classifier are chosen in graphical
form (see Figure 5.7). The table displays different important metrics, which are often
used to evaluate defect prediction classifier (e.g. precision, recall). The graph com-
parison shows the defects per revision, together with number of defects predicted by
the classifier.

• An overview of the changed files per revision and the number of bug-prone files is
visualized by the platform. The number of bug-prone files is calculated by summing
up the files per revision, where the bug label assigned by DECENT (see Section 2.1)
is true. Figure 5.5 depicts the graph resulting from this calculation for the project
"guice".
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Figure 5.6.: Tabular comparison of different classifier. This Table illustrates the different used classifier for the project
guice and their evaluation metrics.

The results of our created classifier are illustrated in figures 5.8 - 5.12. As evaluation met-
rics, our platform calculate, amongst others, precision (see Figure 5.8), recall (see Figure
5.9), F-Measure (see Figure 5.10), G-Measure (see Figure 5.11), and MCC [14] (see Figure
5.12). These figures show the projects on the x-axis and the corresponding evaluation mea-
sure on the y-axis. Furthermore, there are bars for each of the created classifier for each
project.

The results can be improved, but as we have mentioned above, we only want to demon-
strate the analytic capabilities of our platform with this example. Therefore, no effort was
made to tune or improve our prediction results. We were able to successfully mine the
chosen projects and train classifier on the mined data. Furthermore, our platform is able
to display the different results. Hence, our platform can be successfully used to conduct
defect prediction research. But our platform is not limited to defect prediction research, as
the mined data can also be used for other research areas (e.g. software evolution).
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Figure 5.7.: Graphical comparison of two different classifier. The x-axis shows the commit date, whereas the y-axis
illustrates the number of defects. There are three graphs active in this figure: First the number of file-Level
Defects in brown, second the number of defects predicted by CL1 in blue and the number of defects predicted
by CL2 in green. Furthermore, the graph shows the different starts of the used training Data. The training
data ends and the classification start is the same for both compared classifier.
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Figure 5.8.: Evaluation of the performance of the created classifier based on precision. The figure depicts the different
created classifier for each project and their precision.
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Figure 5.9.: Evaluation of the performance of the created classifier based on recall. The figure depicts the different created
classifier for each project and their recall.
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Figure 5.10.: Evaluation of the performance of the created classifier based on based on F-Measure. The figure depicts the
different created classifier for each project and their F-Measure.
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Figure 5.11.: Evaluation of the performance of the created classifier based on G-Measure. The figure depicts the different
created classifier for each project and their G-Measure.
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Figure 5.12.: Evaluation of the performance of the created classifier based on MCC. The figure depicts the different
created classifier for each project and their MCC.
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6. Results and Discussion

We have build a platform, where researchers are able to mine and analyse software projects.
Furthermore, we use modern big data technologies like Apache Spark and Apache Hadoop
for the analysis. Our platform provides a broad spectrum of functionalities:

• Project management features: Automatically mine a project, connect different data
sources (e.g. metrics, duplication detection, see Section 4.3 and 4.2.1). Manage projects
(delete, add).

• Project analysis features: Submit Spark jobs over the web GUI, manage Spark Jobs
via the web GUI and retrieve the results. Usage of Apache Hadoop cluster for analy-
sis in the background (see Section 4.4 and 4.2.2)

• Additional features: User management, backup management (see Section 4.2.4).

• Cloud deployment: The whole infrastructure can be set up and configured using our
Vagrant and Ansible scripts (see Section 4.5), with minimal configuration effort.

Furthermore, we have given examples in our case studies on how to utilize our platform
to facilitate defect prediction research (see Chapter 5). Additionally, we have described
how the web interface of our platform can be used to directly access and compare the
results of our defect prediction research. Different graphs and evaluation metrics are gen-
erated to give an overview of the performance of our classifiers (see Section 5.4). This
shows, that our platform can be operationalized.

The goal was to create a platform with certain characteristics. An overview of these
characteristics and how we implemented them can be found in Table 6.1. Table 6.1 and this
thesis in general illustrate, that we succeeded in building a platform, which possess all the
required characteristics. Important to note is the variety of data that the platform generates
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Required Characteristic Implementation
Easy to use Web-based GUI based on Yii framework
Easy to deploy Vagrant and Ansible scripts
Scalable analytics Use of Apache Spark and Apache Hadoop, as

well as MongoDB (Big Data technologies)
Flexible Modular approach, based on EMF model

instances (DECENT)
Extensible with new approaches Web-based GUI based on Yii framework is

easily extensible, adding of new meta models
or metrics, which are then also combined in
the DECENT model is possible

Usable for different research areas Platform collects different kinds of data.

Table 6.1.: Platform requirements and their implementation in the proposed platform.

for further analysis. This data includes change, social and text metrics. This combination
of different data makes the platform useful for different research directions.

Furthermore, we want to discuss the capabilities of our platform in this chapter. This
includes design decision regarding the mining of the project data, why we have chosen
Apache Spark as analytic backend and decisions regarding the cloud deployment.

Data Mining

The data mining is an important and powerful feature of our platform. Since it is respon-
sible for the collection of the analysis data, it is a vital part of it. As we showed, we can
collect the data of many projects without any problems and only experienced one failure of
the mining (see Section 5.3). The model-based mining process based on DECENT provides
a certain independence of the concrete tools used to collect the data. E.g., to substitute a
tool, we only have to adapt the extraction of the DECENT facts from the raw assets cre-
ated by the tool [66]. All other aspects of the mining remain untouched. Similarly, we
can easily add new information sources to our platform. We just have to extend the DE-
CENT meta-model with additional attributes that fit the structure of the new facts. E.g., if
want to mine mailing lists, we first extract the relevant facts with a third party tool, e.g.,
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MailingListStats [70]. Then, we map the facts to a corresponding meta-model and pro-
vide a model-to-model transformation, e.g., by means of ETL or EOL, which integrates the
mined facts into the DECENT model and we are finished. The rest of the mining process
remains untouched.

Software Analytics

As the analytics examples in Section 5.4 show, the analytics based on the mined data in the
MongoDB with Apache Spark allows flexible and scalable analysis jobs. Java and Python
are popular languages which should facilitate an easy adoption of Apache Spark and, by
extension, of our platform. Moreover, Apache Spark provides good support for the con-
nection with the MongoDB (e.g., through the deep framework, see Section 2.4). Moreover,
there are already libraries for Apache Spark which are useful for the analysis of software
projects, e.g., the Mllib for machine learning which we also use in our analytic examples,
or GraphX for graph and graph-parallel computations. The choice of MongoDB as data
back-end was made, as it is a state-of-the-art NoSQL database, often used in big data ap-
plications, scalable due to sharding (see Section 2.4) and provides a good tool support.

In our examples, we used only defect prediction and only data of one project. However,
there is no reason why data from multiple projects cannot be used for the analytics, or why
other interesting topics, like effort prediction or software evolution in general could not be
studied.

Cloud Deployment

Our cloud deployment allows the scaling of the platform, which makes it suitable for
analysing huge amounts of data, as well as executing highly resource-demanding ana-
lytics. Moreover, since the platform is readily available for researchers, they can concen-
trate on writing analytics programs and do not have to setup and maintain the analysis
infrastructure. Due to our usage of automated deployment scripts, we facilitate that our
platform can be easily adapted to both: new underlying software as well as a new cloud
infrastructure. This also facilitates the recovery of our platform in case of fatal problems.
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7. Limitations

At the actual state of development, the platform has its drawbacks, which we can classify
into two different classes: Resource problems and program problems. Problems, which are
contained in the first class, are problems that arise, because we only have limited resources
in our lab. If there would be more resources available, these problems would not longer
exist. The second class describe problems, which occur, because of the programs we use.
Table 7.1 gives an overview of the different problems and their classes, as well as a possible
solution to it.

The unreliability of InFamix (1) can only be solved, if another tool than InFamix is used,
as it is not open source. Unfortunately, to our knowledge, there is no ready-to-use tool,
which provides this set of metrics for different languages, like InFamix does. Nevertheless,
there are tools in development which might be interesting (e.g. LISA [5]).

The problem, that InFamix is slow (2) can be solved by massive parallelization. DE-
CENT provides an "FX" version of InFamix, where it is possible to distribute the different
revisions, from which the metrics are calculated, between several nodes.

Since we currently only execute InFamix once, this also means that we currently can
also only calculate software metrics for one programming language within our platform.
Hence, projects with multiple programming languages are not yet supported (3). The so-
lution for this is to extend the configuration possibilities of our platform and allow the
selection of multiple programming languages. We can then execute InFamix once for each
programming language. However, InFamix only supports Java, C, and C++ and we, there-
fore, might need to consider other tools for different languages.

Moreover, we currently cannot update the mined data of projects, because of limitations
in the model-based mining framework (4). A workaround is to delete a project and re-
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Problem Description Class Possible Solution
1) InFamix unreliable (sometimes wrong
results or crashes)

Program Substitute InFamix

2) InFamix slow Program
/ Re-
source

Massive parallelization

3) Multiple programming languages
within a project not yet supported

Program
/ Re-
source

Substitute InFamix or exe-
cute InFamix multiple times

4) No incremental update of projects Program Adapt mining process
5) Whole EMF model must fit into RAM
during mining

Resource Provide more resources or
implement EMF-Fragments
(see [80])

6) Bug labels are assigned heuristically Program Integrate ITS facts
7) Apache Spark does not provide
the same amount of functionalities as
Weka[50]

Program Development of a frame-
work based on Apache Spark

8) Web GUI slow in displaying large
amount of data

Resource Provide more resources

9) Due to high CPU and RAM demand,
only one project can be mined at a time

Resource Provide more resources

10) DECENTMongoDBConverter slow
due to double pass to set cross references

Program Refactor the DECENT-
MongoDBConverter to use
Apache Spark

Table 7.1.: Platform problems and possible solutions.
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collect the data at a later point. However, this does not scale well, especially with larger
projects. Instead, the mining process should be adapted to allow incremental mining.

The inherent limitation of EMF models, that the whole EMF model must fit into the RAM
during the mining process (5), can be circumvented by either providing more resources or
implementing the approach proposed by Markus Scheidgen (see [80]). Scheidgen devel-
oped an approach, which fragments EMF models. The models can be accessed like before,
independent of the location of the fragment, which can be, e.g., saved in a MongoDB.

The assignment of bug labels (6) is another problem, because DECENT bases the deci-
sion of if an artifact is bug-prone or not only on the BugFixMessage extension of CVSAnaly
and therefore the assignment is heuristically. CVSAnaly marks revisions as bugfix revi-
sions by looking in the commit message and searching for keywords like bug or fix. In
the processing of the project, an origin analysis is performed to find the revisions of the
artifacts, which are responsible for this bugfix. Nevertheless, this information is some-
times error-prone or missing (e.g., a developer fixed a bug but does not mention it in the
commit message). A partial solution for this problem would be the implementation of the
BZExtractor, proposed by Makedonski et al. [66], to improve the bug label assignment.

Furthermore, Apache Spark does not provide the same functionalities as, e.g., Weka[50]
(7). This can be solved by the development of a framework for Apache Spark, which has
its focus on software project analysis.

The last two resource problems are, that only one project can be mined at a time (9) and
that the web interface is slow at displaying a large amount of data (8). These problems can
be circumvented by providing more resources in terms of CPUs and RAM.

The DECENTMongoDBConverter issue (10) is another program class problem. The con-
verter is slow in the current implementation, as it needs to double pass the data to set cross
references. Only a refactoring of the Converter and/or the use of Apache Spark might
solve this problem by making the whole process faster

We are aware of the fact, that our actual infrastructure is not optimal. Figure 7.1 il-
lustrates, how an optimized infrastructure can look like. To solve the problems with the
webserver, we introduce a webserver cluster with one or more load balancer. Furthermore,
instead of performing the mining on the webserver itself, we deploy a mining cluster. This
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mining cluster has a master node, which distributes the different mining tasks to the min-
ing nodes. Additionally, this mining cluster communicates with the Apache Hadoop clus-
ter via Apache Spark (e.g., for executing the DECENTMongoDBConverter). The Apache
Hadoop cluster consists of the NameNode and the secondary NameNode, as well as the
ResourceManager and a specified amount of Slaves. The webserver can communicate via
Apache Spark with the Apache Hadoop cluster. Furthermore, instead of running the Mon-
goDB on the webserver, we introduce the MongoDB cluster. The MongoDB cluster uses
sharding [72] to make read and write accesses more efficient. Therefore, we deploy several
shards (store the data), router (processes target operations / queries to shards) and three
config servers (store the clusters metadata). The MongoDB documentation highlights, that
exactly three config server are needed [72]. Figure 7.1 does not show, that all these clusters
are deployed in a cloud environment, but this is strongly recommended as the addition of
new resources to the machines is easier this way. Furthermore, the communication flow in
the Apache Hadoop cluster is not depicted. This infrastructure could be easily set up via
Vagrant and Ansible by adapting our scripts. The reason, why we do not have deployed
our platform this way is our limitation on resources.
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Slave 1 Slave N

Namenode RessourcemanagerSecondary Namenode

Mining Cluster

Master

Config Server 1 Config Server 3

MongoDB Cluster

Config Server 2

Load Balancer

Webserver Cluster

Mining Server

Webserver

ShardsRouters

Hadoop Cluster

Figure 7.1.: Desired deployment of our platform. It is important to note, that the figure does not show, that every VM is
deployed in a cloud environment. But this is strongly recommended. Furthermore, the communication flow
in the Apache Hadoop cluster is not shown.
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The research on software mining and software analytics covers many different directions
and aspects. However, most related work only considers software mining (e.g., [16, 23, 42,
57]) or analytic problems (e.g., defect prediction [19] or effort prediction [59]). Only very
few of them consider not only mining or analytics, but actually try to combine these two
aspects. Within this section, we focus only on platforms that combine the data mining with
at least basic functions for analytics or already perform analytics.

Dyer et al. [32, 33] developed Boa, a domain-specific language and infrastructure for
analyzing ultra-large-scale software repositories. It is a query system, where complicated
queries can be executed to extract information from previously cached repositories using a
distributed MapReduce query language. Boa programs compile down to different MapRe-
duce jobs, which are then executed on an Apache Hadoop cluster. The key difference be-
tween Boa and our platform is the type of analysis that is supported. While Boa provides
Abstract Syntax Trees (ASTs) of the projects, it does not directly enable deep analytics, e.g.,
based on software metrics, social aspects, or similar, which are possible with our platform.
Such data would have to be calculated manually for each project by the researchers, which
is a great inhibition when it comes to applications such as defect prediction or effort pre-
diction. Moreover, this would probably lead to performance problems of the analytic ap-
proaches. Furthermore, Boa heavily uses MapReduce for its queries, whereas our platform
uses Apache Spark. It is reported that MapReduce is inefficient for interactive analytics
[92] as they are intended to be performed with Boa. This is the main problem that should
be resolved by Apache Spark.

Gousios and Spinellis [49] developed the Alitheia Core platform to perform “large-scale
software quality evaluation studies” [49]. The architecture of Alitheia Core is divided into
three different layers: (1) Result presentation, (2) system core, and (3) data mirroring, stor-
age, and retrieval. The first layer is implemented via a web front-end. The second layer
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includes a job scheduler and cluster service as well as other services, which are connected
via an Open Services Gateway Initiative (OSGi) interface. The third layer is responsible for
the storage and retrieval of the mined data. This platform provides a metrics plug-in sys-
tem, which enables researchers to implement their own plug-ins to calculate metrics out
of the mined data. From a structural perspective and general idea, Alitheia Core is very
similar to our approach: we also have a mining part, an analytic core, and a web front-
end. However, our platform is designed around big data technologies to allow scalable
analytics. Moreover, our platform is deployed in the cloud in order to allow elastic scaling
of resources. Finally, our analytic core, using Apache Spark, is more powerful in terms of
computational capabilities due to the usage of an Apache Hadoop cluster for job execution
and provides powerful algorithms for the data analysis through Apache Spark’s Mllib and
GraphX libraries.

A proprietary and not publicly available approach for building a software analytics plat-
form with integrated mining is the Microsoft internal CODEMINE [24]. CODEMINE is
quite similar to our platform in its general structure: the data is collected from reposito-
ries, stored in a flexible database and exposed via a single API on which analysis and tools
can be defined. However, no details on the implementation of the platform are available
and we assume that it is tailored to the Microsoft internal tooling environment. In addition
to a high-level description of CODEMINE, the authors also provide lessons learned for
building tools similar to CODEMINE, e.g., flexibility in the analysis and the data storage,
separating the storage for each project, and hosting the platform in a cloud environment.
We used these lessons learned for the design of our platform.

Perl et al. [75] developed VCCFinder, a tool which is used to find potential vulnera-
bilities in OSS projects. They extracted commits from different GitHub project reposito-
ries and created a dataset, which maps Common Vulnerabilities and Exposures (CVE) to
Vulnerability-Contributing Commits (VCCs). Out of these commits, different features are
extracted to train a classifier, which is used to predict, if a new commit introduces a vul-
nerability. Therefore, their approach mines data from GitHub and use this data later on for
an analysis. There are several differences to our approach. First, our platform is designed
as a general-purpose platform. Therefore, we do not fix ourselves to certain features, but
try to mine as much data as possible. Hence, there are more analytic possibilities. Fur-
thermore, as our platform calculates more complex metrics, we need more computational
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resources. We solved this by deploying our platform in a cloud environment in order to
allow an elastic scaling of resources. Additionally, we use an Apache Hadoop cluster and
other big data technologies for a fast analysis process, as some analysis (e.g. Cross-Project
Defect Prediction (CPDP)) can be very time-consuming.

There are also commercial approaches that try to combine software mining with software
analytics. Bitergia [17] offers several packages, which differ in the level of analysis capa-
bilities. However, the analyses provided by Bitergia are on the level of BI, i.e., reporting of
what happened in the repositories. E.g., they provide dashboards that display the number
of performed commits or how many authors are active in the analysed project. Similar to
Bitergia is the OpenHub project [18]. OpenHub is an open platform, where every user can
add or edit projects. The platform calculates different statistics for added projects, which
are similar to the statistics calculated by Bitergia and also on the BI level. In comparison to
our platform, Bitergia and OpenHub do not support deep analytics or predictions for the
future of projects. Additionally, users of Bitergia and OpenHub are not allowed to create
their own analytics.
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We have developed a platform, which incorporates the mining and analysis of software
projects. This platform makes use of modern big data technologies like Apache Spark,
Apache Hadoop and MongoDB. Furthermore, this platform is easy to use and to deploy,
because of the provided web-based interface and the deployment scripts based on Va-
grant and Ansible. Due to the use of Apache Spark and MongoDB, as well as an Apache
Hadoop cluster for the analysis of software projects, our platform is fast and scalable. Ad-
ditionally, our platform is flexible and extensible, because of the use of DECENT for the
project mining as well as the use of the Yii framework for the development of the web in-
terface. Furthermore, we collect a variety of data by using DECENT. Hence, our platform
is useful in conducting research in a broad range of research areas. Additionally, due to the
extensibility of our platform, more data sources can be added easily.

In Chapter 2 we describe the foundations of our work, which includes the DECENT
model, Apache Hadoop and Apache Spark, MongoDB, the Yii framework, Vagrand and
Ansible. We design our approach in Chapter 3. This includes the analysis of the current
situation (how researchers analyse software projects at the moment), an overview of our
platform, the mining and analysis process and a description of the design of our cloud
deployment. Furthermore, we illustrate our implementation in Chapter 4. We describe
our platform in detail, as well as our web-based GUI and how the projects are mined and
analysed. Furthermore, we describe our cloud deployment approach in detail. To evaluate
our platform, we performed case studies, which are described in Chapter 5. These case
studies show, that our platform successfully mine the projects. Furthermore, we give an
application example by conducting defect prediction research on our test projects. The
results illustrate, that our platform is valuable for conducting defect prediction research.
Nevertheless, our classifier results can be improved, but this is not part of this master
thesis. Our overall results are discussed in Chapter 6. Several problems, drawbacks and
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limitations of our platform are explained in Chapter 7. In the last chapter (see Chapter 8),
we have a look at the related work and explain, why the existing work is not sufficient for
the analysis of software projects.

As there are currently some problems, there is room for improving the platform. We
have given some hints for improvements in Chapter 7. First, the platform should support
incremental processing, as the current workaround (deleting and mining the project again)
is time-intensive. Furthermore, as Java and Python are not the only languages that are used
in software project analysis, another goal is to support more languages than just these two
(e.g. R). What is also missing at the moment is a case study with a large project (e.g. Fire-
fox) to evaluate our platform. But this is not possible with the current deployment of our
platform. Furthermore, the performance of the mining should be improved. This includes
the refactoring of the DECENTMongoDBConverter and changing the deployment of our
platform, like it is explained in Chapter 7. Additionally, we plan to enhance the mining
process by incorporating more tools, e.g., BZExtractor [66] to include data from Bugzilla or
MailingListStats1 to incorporate mailing lists. Furthermore, we could improve the perfor-
mance of the mining as well as the analysis process, by using the sharding functionality of
MongoDB. Hence, the queries can be processed in parallel and therefore the performance
raises. Another problem at the moment is the performance of the created defect prediction
models (see Section 5.4.4). Hence, we can test new attributes and other combinations of
calculated metrics to get better evaluation results in terms of, e.g., precision and recall.

1See: https://github.com/MetricsGrimoire/MailingListStats.
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A. Vagrantfile

1 # −∗− mode : ruby −∗−
2 # vi : s e t f t =ruby :

4 VAGRANTFILE_API_VERSION = " 2 "
5 SLAVES_COUNT = $count

7 Vagrant . conf igure (VAGRANTFILE_API_VERSION) do |conf ig|
8 conf ig .vm. box = ’dummy ’
9 conf ig . ssh . username = ’ root ’

10 conf ig . ssh . private_key_path = $keypath )
11 conf ig .vm. synced_folder ’ . ’ , ’/vagrant ’
12 conf ig .vm. boot_timeout = 600

14 conf ig .vm. provider : openstack do |os|
15 os . openstack_auth_url = ’ ht tp : / / 1 7 2 . 1 8 . 1 5 4 . 2 : 5 0 0 0 / v2 .0/ tokens ’
16 os . username = $username
17 os . password = $password
18 os . tenant_name = $tenantname
19 os . f l a v o r = $ f l a v o r
20 os . image = ’ 6 a95af53−c127−48fe−8b98−3f74562d1ad9 ’
21 os . f l o a t i n g _ i p _ p o o l = ’ ext−net ’
22 os . keypair_name = $keyname
23 end

25 conf ig .vm. def ine " namenode " do |namenode|
26 namenode .vm. hostname = " namenode "
27 end

29 SLAVES_COUNT. times do | i |
30 conf ig .vm. def ine " s lave #{ i +1} " do |s lave|
31 s lave .vm. hostname = " s lave #{ i +1} "
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32 end
33 end

35 conf ig .vm. def ine " webserver " do |webserver|
36 webserver .vm. hostname = " webserver "
37 webserver .vm. provider : openstack do |os|
38 os . openstack_auth_url = ’ ht tp : / / 1 7 2 . 1 8 . 1 5 4 . 2 : 5 0 0 0 / v2 .0/ tokens ’
39 os . username = $username
40 os . password = $password
41 os . tenant_name = $tenantname
42 os . f l a v o r = $ f l a v o r
43 os . image = ’ 6 a95af53−c127−48fe−8b98−3f74562d1ad9 ’
44 os . f l o a t i n g _ i p _ p o o l = ’ ext−net ’
45 os . keypair_name = $keyname
46 end
47 end

49 conf ig .vm. def ine " resourcemanager " do |resourcemanager|
50 resourcemanager .vm. hostname = " resourcemanager "

52 resourcemanager .vm. provis ion : a n s i b l e do | a n s i b l e |
53 a n s i b l e . verbose = " v "
54 a n s i b l e . sudo = true
55 a n s i b l e . playbook = " deployment/ s i t e . yml "
56 a n s i b l e . l i m i t = " a l l "

58 s l a v e s = ( 1 . . SLAVES_COUNT) . to_a . map {| id| " s lave #{ id } " }
59 a n s i b l e . groups = {
60 "NameNode" => [ " namenode " ] ,
61 " ResourceManager " => [ " resourcemanager " ] ,
62 " S laves " => slaves ,
63 " Webserver " => [ " webserver " ]
64 }
65 end
66 end

68 end

Listing A.1: Used Vagrantfile for the cloud deployment.
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1 package de . smadap . casestudy ;

3 import java . io . IOException ;
4 import java . u t i l . ArrayList ;
5 import java . u t i l . HashMap ;
6 import java . u t i l . L i s t ;
7 import java . u t i l .Map;

9 import org . apache . spark . SparkConf ;
10 import org . apache . spark . SparkContext ;
11 import org . apache . spark . api . j ava . JavaRDD ;
12 import org . apache . spark . api . j ava . func t ion . Function ;
13 import org . apache . spark . ml l ib . c l a s s i f i c a t i o n . Logist icRegressionModel ;
14 import org . apache . spark . ml l ib . c l a s s i f i c a t i o n . LogisticRegressionWithSGD ;
15 import org . apache . spark . ml l ib . eva luat ion . M u l t i c l a s s M e t r i c s ;
16 import org . apache . spark . ml l ib . l i n a l g . Vectors ;
17 import org . apache . spark . ml l ib . r e g r e s s i o n . LabeledPoint ;
18 import org . bson . types . Object Id ;

20 import s c a l a . Tuple2 ;

22 import com . mongodb . BasicDBObject ;
23 import com . mongodb . DBObject ;
24 import com . mongodb . MongoClient ;
25 import com . mongodb . QueryBuilder ;
26 import com . s t r a t i o . deep . commons . e n t i t y . C e l l ;
27 import com . s t r a t i o . deep . commons . e n t i t y . C e l l s ;
28 import com . s t r a t i o . deep . core . contex t . DeepSparkContext ;
29 import com . s t r a t i o . deep . mongodb . conf ig . MongoConfigFactory ;
30 import com . s t r a t i o . deep . mongodb . conf ig . MongoDeepJobConfig ;
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32 import de . smadap . playbook . u t i l . SparkUt i l s ;
33 /∗∗
34 ∗ Class , which reads out data from a mongodb and c l a s s i f i e s i t i n t o bugprone

and
35 ∗ non−bugprone using a change metr ic c l a s s i f i e r
36 ∗
37 ∗ Procedure :
38 ∗ 1) Create Spark Context with params l i k e host , jobname , c o l l e c t i o n , e t c .
39 ∗ 2) Create a MongoDeepConfig ( query the c o r r e c t f i e l d s )
40 ∗ 3) Create an RDD with the deep conf ig to get the mongodata ( query the

mongodb)
41 ∗ 4) Get Sampled Training data ( from tr a i n i n gB eg in to trainingEnd , which are

both commitIDs )
42 ∗ 5) Preprocess the data : Create LabeledPoints ( l a b e l , metr i cs vec tor )
43 ∗ 6) Create c l a s s i f i e r
44 ∗ 8) Get C l a s s i f i c a t i o n data ( from C l a s s i f i c a t i o n S t a r t to c l a s s i f i c a t i o n end

)
45 ∗ 9) Preprocess the data : Create a map with f i l e I d : LabeledPoint , so t h a t we

can t r a c k the r e s u l t s to the c o r r e c t f i l e .
46 ∗ The l a b e l e d P o i n t i s needed by the c l a s s i f i e r and has a l a b e l and the

metr ics vec tor
47 ∗ 10) Create data f o r the p r e d i c t i o n c o l l e c t i o n , which can be read out by

the webserver
48 ∗ 11) Evaluate the c l a s s i f i e r
49 ∗ 12) Add meta−data ( l i k e fp , fn , tp , tn ) to the p r e d i c t i o n c o l l e c t i o n
50 ∗ 13) Save the p r e d i c t i o n c o l l e c t i o n
51 ∗
52 ∗ Input :
53 ∗ <projectName > <trainingBeginCommitID > <trainingEndCommitID> <

c l a s s i f i c a t i o n S t a r t C o m m i t I D > <classif icat ionEndCommitID > <class i f ierName >
54 ∗
55 ∗ I t i s important to note , t h a t we only look at f i l e s , which have a l a b e l

assigned to i t . I t can happen , t h a t we have
56 ∗ f i l e s , which dont have a lab led assigned . This i s , because decent uses

o r i g i n a n a l y s i s f o r ass igning bug l a b e l s . Therefore ,
57 ∗ i f the data i s " too new" we dont have any c l u e s i f t h i s f i l e i s bug prone

or not .
58 ∗
59 ∗ @author Fabian Trautsch
60 ∗
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61 ∗/

63 publ ic c l a s s C ha n g eC l a ss i f i c a t i o n {

65 publ ic s t a t i c void main ( S t r i n g [ ] args ) throws IOException {

67 // Set up your jobname
68 S t r i n g job = " java : Ch a n ge C la s s i f i ca t i on " ;

70 // Set you host , where mongodb i s running
71 S t r i n g host = " 1 7 2 . 1 8 . 1 3 5 . 2 2 1 " ;
72 i n t port = 27017 ;

74 // Set the mongodb where you are connect ing to
75 S t r i n g database = " smadap " ;
76 S t r i n g i n p u t C o l l e c t i o n = " f i l e " ;
77 S t r i n g projectName = args [ 0 ] ;

79 // Set the i n t e r v a l from which t r a i n i n g should be done
80 i n t t r a i n i ng B eg in = I n t e g e r . p a r s e I n t ( args [ 1 ] ) ;
81 i n t trainingEnd = I n t e g e r . p a r s e I n t ( args [ 2 ] ) ;

84 // Set commit id t i l l when i t should be c l a s s i f i e d
85 i n t c l a s s i f i c a t i o n S t a r t = I n t e g e r . p a r s e I n t ( args [ 3 ] ) ;
86 i n t c l a s s i f i c a t i o n E n d = I n t e g e r . p a r s e I n t ( args [ 4 ] ) ;
87 S t r i n g c lass i f i e rName = args [ 5 ] ;

89 // Set name of the p r e d i c t i o n c o l l e c t i o n
90 S t r i n g p r e d i c t i o n C o l l e c t i o n = " p r e d i c t i o n _ "+projectName+" _ "+

c lass i f i e rName ;

92 // F i r s t d e l e t e c o l l e c t i o n
93 MongoClient c l i e n t = new MongoClient ( host , port ) ;
94 c l i e n t . getDB ( database ) . g e t C o l l e c t i o n ( p r e d i c t i o n C o l l e c t i o n ) . drop ( ) ;

96 // Set predict ionLAbels
97 ArrayList <Str ing > l a b e l s = new ArrayList <Str ing > ( ) ;
98 l a b e l s . add ( " t rue " ) ;
99 l a b e l s . add ( " f a l s e " ) ;
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101 // Create a spark conf ig ( i f you t e s t l o c a l l y , s e t "−Dspark . master=
l o c a l [ 2 ] " to your VM Arguments

102 SparkConf conf = new SparkConf ( ) . setAppName ( job ) ;
103 SparkContext sc = new SparkContext ( conf ) ;

105 // Creat ing the Deep Context where argument i s the spark contex t
106 DeepSparkContext deepContext = new DeepSparkContext ( sc ) ;

108 SparkUt i l s s p a r k U t i l s = new SparkUt i l s ( deepContext ) ;

110 DBObject bsonFie lds = new BasicDBObject ( ) ;
111 bsonFie lds . put ( " metr i cs . HunkCount" , 1 ) ;
112 bsonFie lds . put ( " metr i cs .LOC" , 1 ) ;
113 bsonFie lds . put ( " metr i cs . F i l e S i z e " , 1 ) ;
114 bsonFie lds . put ( " metr i cs . LABELBugFixAverageWeight " , 1 ) ;
115 bsonFie lds . put ( " metr i cs . LinesRemoved " , 1 ) ;
116 bsonFie lds . put ( " metr i cs . LinesAdded " , 1 ) ;
117 bsonFie lds . put ( " _id " , 1 ) ;

119 JavaRDD<Cel ls > input = s p a r k U t i l s . doSampling ( bsonFields , projectName ,
t ra in ingBegin , trainingEnd ,

120 host , port , database , i n p u t C o l l e c t i o n ) ;

123 System . out . p r i n t l n ( input . count ( ) ) ;

125 /∗
126 ∗ Here we parse the data in a way , t h a t we look at our metr ics and

c r e a t e l a b e l e d p o i n t
127 ∗ i n s t a n c e s out of i t . For that , we need our l a b e l ( 0 . 0 or 1 . 0 ) and

a vec tor ( sparse or dense )
128 ∗
129 ∗ This s tep i s done in p a r a l l e l !
130 ∗/
131 JavaRDD<LabeledPoint > t r a i n i n g = input
132 . map(new Function <Cel ls , LabeledPoint > ( ) {

134 @Override
135 publ ic LabeledPoint c a l l ( C e l l s c e l l s ) throws Exception {
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136 // Get metr ics
137 C e l l s metr i cs = ( C e l l s ) c e l l s . getCellByName ( " metr ics " ) .

getCel lValue ( ) ;

139 // F i r s t : Get the l a b e l a t t r i b u t e
140 S t r i n g l a b e l = metr ics . getCellByName ( "

LABELBugFixAverageWeight " ) . g e t S t r i n g ( ) ;

142 // We need a double value f o r the l a b e l
143 double labe lValue = getDoubleForLabel ( l a b e l ) ;

146 /∗
147 ∗ Now we need a double [ ] to c r e a t e the

l a b e l e d p o i n t s . The
148 ∗ f a s t e s t ( but sometimes exhausting ) way to achieve

t h i s i s by
149 ∗ adding the double values by hand .
150 ∗
151 ∗ Another p o s s i b i l i t y i s shown below
152 ∗
153 ∗ Nevertheless , we need to convert t h i s l i s t back

to p r i m i t i v e double array
154 ∗ Addit ional ly , we need to be c a r e f u l with the

s o r t i n g !
155 ∗/

157 // We need to check i f they e x i s t . I f not the value
i s 0 . 0 !

158 double HunkCount = 0 . 0 ;
159 double LOC = 0 . 0 ;
160 double F i l e S i z e = 0 . 0 ;
161 double linesRemoved = 0 . 0 ;
162 double linesAdded = 0 . 0 ;

164 i f ( metr ics . getCellByName ( "HunkCount" ) != n u l l ) {
165 HunkCount = Double . parseDouble ( metr i cs .

getCellByName ( "HunkCount" ) . g e t S t r i n g ( ) ) ;
166 }
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168 i f ( metr ics . getCellByName ( "LOC" ) != n u l l ) {
169 LOC = Double . parseDouble ( metr i cs . getCellByName ( "LOC

" ) . g e t S t r i n g ( ) ) ;
170 }

172 i f ( metr ics . getCellByName ( " F i l e S i z e " ) != n u l l ) {
173 F i l e S i z e = Double . parseDouble ( metr ics . getCellByName

( " F i l e S i z e " ) . g e t S t r i n g ( ) ) ;
174 }

176 i f ( metr ics . getCellByName ( " LinesRemoved " ) != n u l l ) {
177 linesRemoved = Double . parseDouble ( metr ics .

getCellByName ( " LinesRemoved " ) . g e t S t r i n g ( ) ) ;
178 }

180 i f ( metr ics . getCellByName ( " LinesAdded " ) != n u l l ) {
181 linesAdded = Double . parseDouble ( metr i cs .

getCellByName ( " LinesAdded " ) . g e t S t r i n g ( ) ) ;
182 }

184 double [ ] values = { HunkCount , LOC, F i l e S i z e ,
linesAdded , linesRemoved } ;

187 re turn new LabeledPoint ( labelValue , Vectors . dense (
values ) ) ;

188 }
189 } ) ;

191 t r a i n i n g . cache ( ) ;

195 f i n a l Logist icRegressionModel model = new LogisticRegressionWithSGD ( )
. run ( t r a i n i n g . rdd ( ) ) ;

197 // Get c l a s s i f i c a t i o n data
198 QueryBuilder c lass i fyQuery = QueryBuilder . s t a r t ( ) ;

118



B. Apache Spark Analysis Program

200 // We only want to have a r t i f a c t s of t h i s s p e c i f i c p r o j e c t with t h i s
conf idence

201 c lass i fyQuery . put ( " projectName " ) . i s ( projectName ) ;
202 c lass i fyQuery . and ( " type " ) . i s ( " code " ) ;
203 // We j u s t want to have a l l f i l e s with commitID g r e a t e r than 50
204 c lass i fyQuery . and ( " commitID " ) . greaterThan ( c l a s s i f i c a t i o n S t a r t ) .

lessThan ( c l a s s i f i c a t i o n E n d ) ;
205 c lass i fyQuery . and ( " metr i cs . LABELBugFixAverageWeight " ) . in ( l a b e l s ) ;

209 MongoDeepJobConfig<Cel ls > c l a s s i f y E n t i t i y = MongoConfigFactory .
createMongoDB ( ) . host ( host ) . port ( port ) . database ( database )

210 . c o l l e c t i o n ( i n p u t C o l l e c t i o n )
211 . c r e a t e I n p u t S p l i t ( f a l s e )
212 . f i l t e r Q u e r y ( c lass i fyQuery ) . f i e l d s ( bsonFie lds ) ;

218 // Create a javardd f i l e out of the response f o r p a r a l l e l process ing
219 JavaRDD<Cel ls > c l a s s i f y = deepContext . createJavaRDD ( c l a s s i f y E n t i t i y ) ;

222 /∗
223 ∗ Here we parse the data in a way , t h a t we look at our metr ics and

c r e a t e l a b e l e d p o i n t
224 ∗ i n s t a n c e s out of i t . For that , we need our l a b e l ( 0 . 0 or 1 . 0 ) and

a vec tor ( sparse or dense )
225 ∗
226 ∗ This s tep i s done in p a r a l l e l !
227 ∗/
228 JavaRDD<Map<Str ing , LabeledPoint >> c l a s s i f i c a t i o n D a t a = c l a s s i f y
229 . map(new Function <Cel ls , Map<Str ing , LabeledPoint > >() {

231 @Override
232 publ ic Map<Str ing , LabeledPoint > c a l l ( C e l l s c e l l s ) throws

Exception {
233 // Get metr ics
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234 C e l l s metr i cs = ( C e l l s ) c e l l s . getCellByName ( " metr ics " ) .
getCel lValue ( ) ;

236 // F i r s t : Get the l a b e l a t t r i b u t e
237 S t r i n g l a b e l = metr ics . getCellByName ( "

LABELBugFixAverageWeight " ) . g e t S t r i n g ( ) ;

239 // We need a double value f o r the l a b e l
240 double labe lValue = getDoubleForLabel ( l a b e l ) ;

242 double HunkCount = 0 . 0 ;
243 double LOC = 0 . 0 ;
244 double F i l e S i z e = 0 . 0 ;
245 double linesRemoved = 0 . 0 ;
246 double linesAdded = 0 . 0 ;

248 i f ( metr ics . getCellByName ( "HunkCount" ) != n u l l ) {
249 HunkCount = Double . parseDouble ( metr i cs .

getCellByName ( "HunkCount" ) . g e t S t r i n g ( ) ) ;
250 }

252 i f ( metr ics . getCellByName ( "LOC" ) != n u l l ) {
253 LOC = Double . parseDouble ( metr i cs . getCellByName ( "LOC

" ) . g e t S t r i n g ( ) ) ;
254 }

256 i f ( metr ics . getCellByName ( " F i l e S i z e " ) != n u l l ) {
257 F i l e S i z e = Double . parseDouble ( metr ics . getCellByName

( " F i l e S i z e " ) . g e t S t r i n g ( ) ) ;
258 }

260 i f ( metr ics . getCellByName ( " LinesRemoved " ) != n u l l ) {
261 linesRemoved = Double . parseDouble ( metr ics .

getCellByName ( " LinesRemoved " ) . g e t S t r i n g ( ) ) ;
262 }

264 i f ( metr ics . getCellByName ( " LinesAdded " ) != n u l l ) {
265 linesAdded = Double . parseDouble ( metr i cs .

getCellByName ( " LinesAdded " ) . g e t S t r i n g ( ) ) ;
266 }
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268 double [ ] values = { HunkCount , LOC, F i l e S i z e ,
linesAdded , linesRemoved } ;

270 // Get _id
271 S t r i n g id = ( ( Object Id ) c e l l s . getCellByName ( " _id " ) .

getCel lValue ( ) ) . t o S t r i n g ( ) ;

273 Map<Str ing , LabeledPoint > returnMap = new HashMap<
Str ing , LabeledPoint > ( ) ;

274 returnMap . put ( id , new LabeledPoint ( labelValue ,
Vectors . dense ( values ) ) ) ;

276 re turn returnMap ;
277 }
278 } ) ;

281 // Create p r e d i c t i o n s e t f o r mongodb
282 JavaRDD<Cel ls > idandlabel = c l a s s i f i c a t i o n D a t a . map(
283 new Function <Map<Str ing , LabeledPoint > , Cel ls > ( ) {

285 publ ic C e l l s c a l l (Map<Str ing , LabeledPoint > map) {

287 // Get l a b e l e d p o i n t
288 S t r i n g id = ( S t r i n g ) map . keySet ( ) . toArray ( ) [ 0 ] ;
289 LabeledPoint point = map . get ( id ) ;
290 Double p r e d i c t i o n = model . p r e d i c t ( point . f e a t u r e s ( ) ) ;

292 C e l l s r e s u l t = new C e l l s ( ) ;
293 r e s u l t . add ( C e l l . c r e a t e ( " f i l e I d " , id ) ) ;
294 r e s u l t . add ( C e l l . c r e a t e ( " p r e d i c t i o n " , getLabelForDouble (

p r e d i c t i o n ) ) ) ;

296 re turn r e s u l t ;
297 }
298 }
299 ) ;
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304 // Compute raw s c o r e s on the t e s t s e t .
305 JavaRDD<Tuple2<Object , Object >> predict ionAndLabels =

c l a s s i f i c a t i o n D a t a . map(
306 new Function <Map<Str ing , LabeledPoint > , Tuple2<Object , Object > >() {
307 publ ic Tuple2<Object , Object > c a l l (Map<Str ing , LabeledPoint > map)
308 throws Exception {
309 // Get l a b e l e d p o i n t
310 S t r i n g id = ( S t r i n g ) map . keySet ( ) . toArray ( ) [ 0 ] ;
311 LabeledPoint point = map . get ( id ) ;
312 Double p r e d i c t i o n = model . p r e d i c t ( point . f e a t u r e s ( ) ) ;
313 re turn new Tuple2<Object , Object >( predic t ion , point . l a b e l ( ) ) ;
314 }
315 }
316 ) ;

318 // Get eva luat ion metr ics .
319 // As we see here , the ordering of the confusion matrix i s :
320 // 0 1
321 //0
322 //1
323 M u l t i c l a s s M e t r i c s metr i cs = new M u l t i c l a s s M e t r i c s ( predictionAndLabels

. rdd ( ) ) ;
324 System . out . p r i n t l n ( " Labels = "+metr ics . l a b e l s ( ) [ 0 ] ) ;
325 System . out . p r i n t l n ( " Labels = "+metr ics . l a b e l s ( ) [ 1 ] ) ;
326 System . out . p r i n t l n ( " Confusion matrix = "+metr ics . confusionMatrix ( ) ) ;

328 // Ca l c u l a te tn , fn , fp , tp
329 System . out . p r i n t l n ( "TN = "+metr ics . confusionMatrix ( ) . toArray ( ) [ 0 ] ) ;
330 System . out . p r i n t l n ( "FN = "+metr ics . confusionMatrix ( ) . toArray ( ) [ 1 ] ) ;
331 System . out . p r i n t l n ( " FP = "+metr ics . confusionMatrix ( ) . toArray ( ) [ 2 ] ) ;
332 System . out . p r i n t l n ( "TP = "+metr ics . confusionMatrix ( ) . toArray ( ) [ 3 ] ) ;

335 // Add needed metadata ( needed by webserver )
336 C e l l s cutOffData = new C e l l s ( ) ;
337 cutOffData . add ( C e l l . c r e a t e ( " trainCommitIDStart " , t ra in i ng Be g in ) ) ;
338 cutOffData . add ( C e l l . c r e a t e ( " trainCommitIDEnd " , trainingEnd ) ) ;
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339 cutOffData . add ( C e l l . c r e a t e ( " c l a s s i f i c a t i o n S t a r t " , c l a s s i f i c a t i o n S t a r t
) ) ;

340 cutOffData . add ( C e l l . c r e a t e ( "TN" , metr i cs . confusionMatrix ( ) . toArray ( )
[ 0 ] ) ) ;

341 cutOffData . add ( C e l l . c r e a t e ( "TP" , metr i cs . confusionMatrix ( ) . toArray ( )
[ 3 ] ) ) ;

342 cutOffData . add ( C e l l . c r e a t e ( "FN" , metr i cs . confusionMatrix ( ) . toArray ( )
[ 1 ] ) ) ;

343 cutOffData . add ( C e l l . c r e a t e ( " FP " , +metr ics . confusionMatrix ( ) . toArray ( )
[ 2 ] ) ) ;

345 Lis t <Cel ls > output = idandlabel . c o l l e c t ( ) ;
346 output . add ( cutOffData ) ;

348 JavaRDD<Cel ls > toMongoDB = deepContext . p a r a l l e l i z e ( output ) ;
349 // Create output job conf ig
350 MongoDeepJobConfig<Cel ls > outputConfigEnti ty = MongoConfigFactory .

createMongoDB ( ) . host ( host ) . port ( port ) . database ( database )
351 . c o l l e c t i o n ( p r e d i c t i o n C o l l e c t i o n ) . i n i t i a l i z e ( ) ;

353 // Save RDD
354 DeepSparkContext . saveRDD ( toMongoDB . rdd ( ) , outputConfigEnti ty ) ;

356 // Stop the whole contex t
357 deepContext . c l o s e ( ) ;

360 }

362 protec ted s t a t i c double getDoubleForLabel ( S t r i n g l a b e l ) {
363 i f ( l a b e l . equals ( " t rue " ) ) {
364 re turn 1 . 0 ;
365 }
366 re turn 0 . 0 ;
367 }

369 protec ted s t a t i c S t r i n g getLabelForDouble ( Double l a b e l ) {
370 i f ( l a b e l . equals ( 1 . 0 ) ) {
371 re turn " t rue " ;
372 }
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374 re turn " f a l s e " ;
375 }

378 }

Listing B.1: Apache Spark analysis program example. Used in the Case Study for Defect Prediction.
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ABSTRACT
Nowadays, repository mining and software analytics together
form a large research direction, with hundreds of publica-
tions on how data should be collected from repositories, with
datasets that were donated by researchers, as well as many
analyses performed on the data sets. However, for the most
part the mining and analytic activities are independent of
each other. With SmartSHARK, we want to introduce a
solution that integrates the data collection through reposi-
tory mining with a powerful analytics platform that enables
deep analysis of software projects. SmartSHARK is devel-
oped as a cloud platform with a web front-end that provides
researchers with an analytic sandbox. SmartSHARK pro-
vides different kinds of data, including source code metrics,
social metrics as well as the textual differences between revi-
sions on multiple levels of abstraction, e.g., the file level, the
class level, and the method level. The mined data is stored
in a performant NoSQL database and software analysis jobs
can be defined with Apache Spark. We provide an example
in which we show how SmartSHARK can be utilized to de-
fine powerful analytics that combine different aspects of the
development of a software.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging;
I.2.6 [Artificial Intelligence]: Learning

General Terms
Experimentation, Algorithms

Keywords
software mining, software analytics, smart data

1. INTRODUCTION
During the last decade, repository mining and software

analytics became a highly topical research topic that spawn-
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ed hundreds of publications. The rise of this research area re-
sulted in many tools for mining repositories, datasets mined
by researchers, and analysis performed by researchers. How-
ever, for the most part independent of each other. There are
multiple projects that provide integration points for the cur-
rently ongoing research. Data repositories like teraPROMISE
[56] and GitHub archive [41] collect data and facilitate re-
search on common data sets, but do not provide means for
the data analysis. Projects like MetricsGrimoire try to gain
control of the mining tools by giving them a common home.
The commercial Bitergia [13] platform uses software from
the MetricsGrimoire to provide Business Intelligence (BI)
about projects. But Bitergia is a closed source solution and,
moreover, does not support complex analysis, e.g., based
on machine learning. Other platforms, such as CrossPare
[45], focus only on analytics and completely omit the data
mining.

From a data science perspective, all of the above approaches
are lacking, due to the missing integration of data collection,
storage, and analytics. Here, the ideal scenario is an analytic
sandbox [27], which contains all the data, can be updated
with new data, and allows complex analysis of the data. The
creation of this infrastructure and the analysis of the mined
data is difficult [12, 37, 56, 66]. In addition, creating an
infrastructure that scales well is even harder to achieve [66].
Moreover, the data should be in control of the data scien-
tist. If we map this to software analytics based on repository
mining, it means we require a platform that integrates the
mining of repositories with the means for software analytics.

With SmartSHARK (http://smartshark.informatik.
uni-goettingen.de1), we want to provide an analytic sand-
box for software analytics. SmartSHARK enables re-
searchers to automatically mine data and provides them
with powerful and scalable tooling for the analysis of the
data. SmartSHARK mines the complete history of a project
and collects static source code metrics, change metrics, so-
cial metrics, as well as the textual diffs [33] for each revision.
Through the storage of the mined data in a shared database,
SmartSHARK implicitly grows a repository with data about
software projects that can be exploited by researchers. With
MongoDB [59] as database back-end, we employ a state-of-
the-art NoSQL database which can handle huge amounts
of data without scalability problems. To facilitate analysis,
SmartSHARK makes use of Apache Spark [8]. Through the
definition of their own Spark jobs, researchers can perform
different analyses on the projects. We show with a sample

1Credentials for reviewers: admin / 86t4$3RzP ; advance-
duser / 6Xt4$15PQsT ; user / 5tx261Rz$
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application, how SmartSHARK can be used to define anal-
ysis jobs, that even combine text analysis, and metric based
software analytics.

Moreover, a platform that integrates mining and analysis
is not only interesting for researchers, but also important
to create actionable software analytics. Therefore, we mod-
ified the SmartSHARK front-end in a way that the results
of our sample analysis are displayed directly together with
the projects. Through this, reporting becomes part of the
platform, which is the precursor for putting the software an-
alytics into operation. Our approach is in this regard similar
to Bitergia, but allows complex analytics instead of BI.

SmartSHARK is developed as a cloud platform, including
scripts for the automated deployment and setup of virtual
machines. This way, SmartSHARK can be installed in pri-
vate clouds, to create private data repositories and analytics
approaches, as well as in public clouds for the sharing of data
and analytics.

The main contributions of our paper are the following.

• The SmartSHARK cloud platform for scalable soft-
ware analytics based on Apache Spark.

• A software mining approach that is integrated into
SmartSHARK to update data and collect information
about new projects.

• The combination of different data sources that allows
to combine text mining with source code, change and
social metrics.

The remainder of this paper is structured as follows. In
Section 2, we give an overview of the related work. Then, we
describe the SmartSHARK platform in Section 3. Within
that section, we describe the mining procedure and data
storage, how analyses are supported, the front-end of the
platform, as well as the structure of the cloud deployment.
Then, we proceed with the description of a sample analytics
project in Section 4, to demonstrate the power of Smart-
SHARK. Afterwards, we discuss the capabilities of Smart-
SHARK and currently known problems and limitations to-
gether with possible solutions in Section 5. Finally, we con-
clude and give an outlook on future work in Section 6.

2. RELATED WORK
The research on software mining and software analytics

covers many different directions and aspects. However, most
related work only considers software mining (e.g., [12, 18,
34, 47]) or analytic problems (e.g., defect prediction [16] or
effort prediction [50]). Only very few of them consider not
only mining or analytics, but actually try to combine these
two aspects. Within this section, we focus only on platforms
that combine the data mining with at least basic functions
for analytics or already perform analytics.

Dyer et al. [24, 25] developed Boa, a domain-specific lan-
guage and infrastructure for analyzing ultra-large-scale soft-
ware repositories. It is a query system, where complicated
queries can be executed to extract information from pre-
viously cached repositories using a distributed MapReduce
query language. Boa programs compile down to different
MapReduce jobs, which are then executed on an Apache
Hadoop [6] cluster. The key difference between Boa and
SmartSHARK is the type of analysis that is supported. While
Boa provides Abstract Syntax Trees (ASTs) of the projects,

it does not directly enable deep analytics, e.g., based on soft-
ware metrics, social aspects, or similar, which are possible
with SmartSHARK. Such data would have to be calculated
manually for each project by the researchers, which is a great
inhibition when it comes to applications such as defect pre-
diction or effort prediction. Moreover, this would probably
lead to performance problems of the analytic approaches.
Furthermore, Boa heavily uses MapReduce for its queries,
whereas SmartSHARK uses Apache Spark. It is reported
that MapReduce is inefficient for interactive analytics [78]
as they are intended to be performed with Boa. This is the
main problem that should be resolved by Apache Spark.

Gousios and Spinellis [40] developed the Alitheia Core
platform to perform “large-scale software quality evaluation
studies” [40]. The architecture of Alitheia Core is divided
into three different layers: (1) Result presentation, (2) sys-
tem core, and (3) data mirroring, storage, and retrieval. The
first layer is implemented via a web front-end. The second
layer includes a job scheduler and cluster service as well as
other services, which are connected via an Open Services
Gateway Initiative (OSGi) interface. The third layer is re-
sponsible for the storage and retrieval of the mined data.
This platform provides a metrics plug-in system, which en-
ables researcher to implement their own plug-ins to calculate
metrics out of the mined data. From a structural perspec-
tive and general idea, Alitheia Core is very similar to our
approach: we also have a mining part, an analytic core, and
a web front-end. However, our platform is designed around
big data technologies to allow scalable analytics. Moreover,
our platform is deployed in the cloud in order to allow elas-
tic scaling of resources. Finally, our analytic core, using
Apache Spark, is more powerful in terms of computational
capabilities due to the usage of an Apache Hadoop cluster
for job execution and provides powerful algorithms for the
data analysis through Apache Spark’s Mllib and GraphX
libraries.

A proprietary and not publicly available approach for build-
ing a software analytics platform with integrated mining
is the Microsoft internal CODEMINE [19]. CODEMINE
is quite similar to SmartSHARK in its general structure:
the data is collected from repositories, stored in a flexible
database and exposed via a single API on which analysis
and tools can be defined. However, no details on the imple-
mentation of the platform are available and we assume that
it is tailored to the Microsoft internal tooling environment.
In addition to a high-level description of CODEMINE, the
authors also provide lessons learned for building tools similar
to CODEMINE, e.g., flexibility in the analysis and the data
storage, separting the storage for each project, and hosting
the platform in a cloud environment. We used these lessons
learned for the the design of SmartSHARK.

There are also commercial approaches that try to com-
bine software mining with software analytics. Bitergia [13]
offers several packages, which differ in the level of analysis
capabilities. However, the analyses provided by Bitergia are
on the level of BI, i.e., reporting of what happened in the
repositories. For example, they provide dashboards that dis-
play the number of performed commits or how many authors
are active in the analysed project. Similar to Bitergia is the
OpenHub project [14]. OpenHub is an open platform, where
every user can add or edit projects. The platform calculates
different statistics for added projects, which are similar to
the statistics calculated by Bitergia and also on the BI level.
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Figure 1: Design of SmartSHARK

In comparison to SmartSHARK, Bitergia and OpenHub do
not support deep analytics or predictions for the future of
projects. Additionally, users of Bitergia and OpenHub are
not allowed to create their own analytics.

3. THE SMARTSHARK PLATFORM
Generally, the process of analysing a software project can

be divided into two different steps: (1) mining of the project
data and (2) analysis of the mined data. Moreover, to cre-
ate a software project analytics platform that is attractive
for a broad range of researchers and practitioners, the devel-
oped platform should possess the following four characteris-
tics [15, 19]: (1) easy to use; (2) allow flexible and scalable
analytics; (3) extensible with new approaches; and (4) allow
analysis of different kinds of data collected from multiple
sources.

SmartSHARK is designed as a general-purpose platform
for supporting software analytics with the aim to fulfil all
of the above characteristics, and supports both the software
mining as well as the analytics. Figure 1 gives a logical
overview of the platform, which is independent of the un-
derlying infrastructure.

SmartSHARK reduces the manifold tasks of a researcher
to exactly two tasks: (1) Choosing the software project,
which should be analysed, and (2) the writing of an analy-
sis program. Hence, the researcher is able to focus on the
writing of the analysis program, since choosing a software
project to investigate does not consume time and the min-
ing process is automated (see Section 3.1). The results of the
mining process are saved in a MongoDB. After the comple-
tion of the mining process, the researcher writes an analysis
program based on Apache Spark [8, 77, 78]. This analysis
program is executed on the platform and accesses the mined
data in the MongoDB (see Section 3.2). All functionality is
hidden behind a web front-end based on the Yii2 framework
[76] (see Section 3.3). The complete SmartSHARK plat-
form is developed as a cloud application in order to allow
harnessing the scalability offered by the cloud (see Section
3.4).

3.1 Data Mining
Many tools and methods, which are used for data ex-

traction and application, are context-specific. These tools
are hard to adapt to different circumstances, because of the
tight coupling between the extraction process and the appli-
cation. Makedonski et al. [54] proposed a model-based soft-
ware mining infrastructure to circumvent these problems.
The framework relies on ”homogeneous high-level domain-
specific models of facts extracted from raw assets”[54]. These
different domain-specific models are then combined and trans-

formed into models, that are related to a certain assessment
task. These models make use of the Eclipse Modeling Frame-
work (EMF). The mining step in our platform is performed
with the help of this model-based infrastructure, which is
called DECENT. DECENT uses different tools, which are
widely used in research, to extract facts from raw assets.
These tools include CVSAnaly [57] for extracting informa-
tion out of source code repository logs (e.g., used in [31,
46]), InFamix [48] for calculating software quality metrics
(e.g., used in [4]), and DuDe [23, 74] for duplication de-
tection. DECENT combines the results of all these tools
and links them together into a single DECENT model. Af-
ter the creation of the DECENT model, we transform it
into an intermediate EMF model called DECENTMongo,
which is used to translate the DECENT structure into the
structure of the MongoDB used by SmartSHARK. Then, the
DECENTMongoDBConverter tool, which is part of Smart-
SHARK, writes the mined data from the DECENTMongo
model to the MongoDB.

As stated above, researchers only need to choose the soft-
ware projects, which should be mined. The projects are
added via the web front-end. SmartSHARK only requires
(1) the URL of the Version Control System (VCS) and (2)
the programming language of the project. As VCS, Smart-
SHARK currently only supports Git. The programming lan-
guage is required by InFamix for the calculation of software
metrics. During the mining process, the progress can be ob-
served in the web front-end. Furthermore, each project has
its own configuration files, which can optionally be edited
via the web front-end to customize the mining process.

The data we obtain from the mining process are change-
based. For each change (i.e. commit), we store all changed
software artifacts and their location in the project. There-
fore, it is possible to reconstruct the whole project structure
at any point in time. The software artifacts include source
code files, classes, methods, functions as well as documenta-
tion files, such as readme files.

We store five different types of data for each artifact: (1)
software metrics, (2) source code changes, (3) project struc-
ture, (4) change history, and (5) bug labels. The software
metrics include static source code metrics, change metrics,
social metrics (e.g. developer cooperation factors). A com-
plete list of the metrics can be found in the SmartSHARK
documentation online [71]. Furthermore, we save delta val-
ues for each metric, which indicate how this metric has
changed since the artifact was last touched. In addition to
the metrics, we also save the concrete textual change that
was made, i.e., the diff of the commit. This enables re-
searchers to analyse the source code and the changes that
were made to it. This is important for the development of
new defect prediction approaches, as shown by, e.g., Tan et
al. [69]. Additionally, we store bug labels and a confidence
indicator label for each artifact at each change. The confi-
dence label indicates, if the resulting bug label (artifact is
bug-prone at this change or not) can be trusted. These bug
and confidence labels are generated by DECENT via origin
analysis [36].

3.2 Software Analytics
Out of the data we mine, we can answer questions which,

for example, typically arise if we examine the evolution of
a software project: How many files were changed between
commit 2 and commit 70? Which files were moved in this
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time frame? How is the ownership of file X changing? The
data can also be used for deeper analytics, like defect pre-
diction, effort prediction, or social aspects of the software
development. An analytic example is given in Section 4.

As stated above, we connected our platform directly with
the Apache Spark framework for big data analytics. The
core of Apache Spark is an abstraction called Resilient Dis-
tributed Datasets (RDDs). RDDs are defined as a ”fault-
tolerant collection of elements that can be operated on in
parallel” [10]. Furthermore, they have the ability to re-
build lost data, in case of failures during job executions.
Spark applications are coordinated by a SparkContext ob-
ject in the main program (in Spark called: driver program)
and run as an independent set of processes on a cluster.
The SparkContext must be connected with a cluster man-
ager. Apache Spark offers different connections or deploy-
ment methods [11]: (1) standalone mode, where Apache
Spark itself provides a simple cluster manager; (2)mesos
mode, where Apache Mesos [7] is used as cluster manager;
and (3) Yet Another Resource Negotiator (YARN) Mode,
where YARN is used as cluster manager. SmartSHARK
uses the YARN mode of Spark. We use an Apache Hadoop
cluster, where YARN runs on.

For the definition of analysis jobs, Spark supports multiple
languages. With SmartSHARK we currently support only
Java and Python for the definition of Spark jobs. To perform
analytics on SmartSHARK, the researcher first writes their
analysis program. Spark allows local testing of jobs with-
out the need to run on the actual Hadoop cluster, which
we recommend for users of SmartSHARK before job execu-
tion on the platform. Once the testing is completed, the
researcher can upload and execute the Java Archive (JAR)
or Python file to the platform using the web front-end. The
front-end allows to add Spark arguments as well as program
arguments. This allows for parametrizable analytic jobs,
e.g., to define the name of the project to be analyzed or a
certain threshold important for the analysis using program
arguments. For the execution, the Spark jobs are submitted
to the Hadoop cluster, distributed among the nodes in the
cluster and processed in parallel. Information about all jobs,
both running, as well as completed, are retrieved via the
Representational State Transfer (REST) Application Pro-
gramming Interface (API) of Hadoop and displayed in the
web front-end. Furthermore, it is possible to terminate a
job via the interface.

Results can be saved in the MongoDB (if the user has
sufficient rights, see Section 3.3) or in the local file system.
All users of the platform have their own directory, where
data can be saved. Users can manage their folders with
the web front-end, which allows downloading and deleting
of saved files.

3.3 Web Front-End
From and end-user perspective, the web front-end is the

central part of our platform. It is the only place where users
directly interact with SmartSHARK and the starting point
for both the mining and the software analytics. We decided
to build a web based Graphical User Interface (GUI) based
on the Yii2 framework [76], because of the good implemen-
tation of the Model-View-Controller (MVC) design pattern
of Yii2, which allows easy extension of applications. The
decision to deploy SmartSHARK online and provide users
with a web front-end also resolves the problem of distribut-

Role Name Web Interface
Permissions

MongoDB
Permissions

Admin all all
AdvancedUser access to owned files;

submission of Spark
jobs; can only see
fully mined projects

read, write,
delete

User same as Advance-
dUser

read

Table 1: User Roles and their permissions.

ing SmartSHARK, because interested users can simply visit
the home page and do not need to download and install a
standalone application. The main tasks of the web front-
end are the following: (1) management of mined projects,
(2) software analytics, (3) user management.

3.3.1 Management of Mined Projects
For the project management, SmartSHARK offers the fol-

lowing features:

• Add project: Adds a project to the project list,
which can be mined later.

• List projects: Shows all projects, together with their
mining progress. Furthermore, sorting and searching
functionalities are implemented.

• View project: Displays detailed information about
the project, like a graph depicting the artifacts that
were changed in each commit.

• Start mining: Starts the mining process for the cho-
sen project.

• Delete project: Deletes the project and all its data.

3.3.2 Software Analytics Front-end
The analysis feature comprises of the submission and mon-

itoring of jobs, as described in Section 3.2, as well as the
results management. Users can download and delete the
results stored in their private folder via the web interface.
Depending on the user rights, the submitted jobs may be
allowed to modify the underlying MongoDB with the mined
data. Moreover, the front-end contains examples for ana-
lytic jobs which can be used as a cookbook for the definition
of new analytic jobs.

3.3.3 User Management
SmartSHARK implements Create, Read, Update, Delete

(CRUD) user management functionalities. Each Smart-
SHARK user has a role that is assigned via the web front-
end. The role specifies the permissions for the web front-end
and the MongoDB access. Table 1 shows the different roles
and their permissions. The three defined roles allow the sep-
aration between users who are allowed to trigger the min-
ing of projects and adapt the configuration of the platform
(Admin role), users that are allowed to create analytics that
modify the MongoDB (AdvancedUser role) and users that
can only create analytics that access the MongoDB without
write privileges (User role). This can be useful if students
should work with the platform to make sure that they can-
not delete or overwrite data by mistake.
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Figure 2: Infrastructure of SmartSHARK.

3.3.4 Additional Features
The web front-end has several features, which are impor-

tant for conducting research. First, the web interface pro-
vides a backup functionality for the project data. The re-
searcher needs to provide a backup name and select which
collections of the MongoDB should be backed up. It is pos-
sible to, e.g., backup all the mined data, or only the data
about the methods of the projects. This feature is especially
useful for the preparation of a publication, where a fixed
data set is required which may not be changed afterwards.
SmartSHARK allows the download of created backups, as
well as the import of backups into its database. However,
the import does not integrate with the existing data, but
overwrites the complete mined data.

Moreover, the web front-end was extended to show some
analysis results for each project directly, instead of having
the results only available as download. This was performed
as part of the analytics example we provided to show how
SmartSHARK can be modified to directly put results into
operation and make them actionable.

3.4 Cloud Deployment
SmartSHARK is developed as a cloud platform. Cur-

rently, we are running SmartSHARK in a small private cloud
that we locally operate within our research group for re-
search purposes. The infrastructure of our SmartSHARK
deployment is depicted in Figure 2. Currently, we have a
web-server and an Apache Hadoop cluster. Table 2 shows
the Virtual Machines (VMs) and their specifications. The
webserver needs to have a large amounts of RAM, it cur-
rently fulfills mutliple roles: it does not only host the web
front-end, but is also responsible for the mining of projects
and the hosting of the MongoDB. The RAM is mostly re-
quired for the mining, because the EMF models created
during the mining must fit completely into the RAM. We
are aware that this is not ideal, but currently cannot deploy
SmartSHARK in a better way, with dedicated servers for the
MongoDB and the mining, due to a limitation of resources.
The Apache Hadoop cluster executes analytics jobs defined
with Apache Spark.

Our aim was to develop SmartSHARK in a way, that the
deployment is as easy as possible and the deployment model
is adaptive, to allow changes based on the available com-
putational resources, e.g., using dedicated servers for the
MongoDB and the mining. Therefore, we use DevOps tech-
nologies to provide scripts that fully automate. The deploy-
ment process is twofold: First, VMs have to be created and
provisioned in our cloud. Second, the created machines need
to be configured.

Hostname Virtual CPU RAM Disk Space

namenode 2 / 64bit 4GB 40GB
resource-
manager

2 / 64bit 4GB 40GB

slave1 2 / 64bit 4GB 40GB
slave2 2 / 64bit 4GB 40GB
webserver 8/ 64bit 16GB 160GB

Table 2: VMs of the SmartSHARK Deployment.

3.4.1 Creation of VMs
We use Vagrant [43] for the creation and provisioning of

VMs. Vagrant allows the definition of scripts that spec-
ify which and how many VMs shall be created. The first
part of the deployment is adding the user credentials for the
cloud to the script. The second part is the specification of
the required VMs. This is done using so-called flavors. A
flavor defines the available resources of a VM, i.e., the com-
putational capabilities in terms of CPUs, RAM, as well as
disk space. Within the deployment script, it is specified how
many VMs of which flavors are required. The Vagrant script
also defines how many slave nodes the Hadoop cluster has.

Once the VMs are created, they must be provisioned, i.e.,
instantiated with an operating system. Vagrant allows the
selection of predefined images of operating systems which
can be downloaded for this purpose. For SmartSHARK, we
are currently using Ubuntu 14.04. Once the provisioning is
performed, we have the required VMs up and running with
an operating software, but no other software installed yet.

3.4.2 VM Configuration
We use Ansible [5] for the configuration of the VMs. An-

sible can be called using Vagrant and allows the definition of
so-called playbooks, i.e., scripts that define which software
should be installed in a VM and how the software should be
configured. To achieve this, Ansible allows calling bash com-
mands required for the setup of applications. This approach,
compared to manually configuring the systems, has several
advantages: First, it makes versioning possible. Hence, the
infrastructure can be recreated at any point in time. Fur-
thermore, the system configuration can be split into smaller
pieces, which are better manageable. These aspects are im-
portant for the extensibility of SmartSHARK as well as for
its deployment on different infrastructures.

The configuration of SmartSHARK requires six different
playbooks. Each playbook serves a different role for the con-
figuration of SmartSHARKs infrastructure. The playbooks
are the following.

• common: Installs base software, which is needed on
every VM, e.g., Java, Network File System (NFS).

• hadoop common: Downloads Hadoop and creates
the Hadoop user on every VM.

• hadoop configuration: Configures Apache Hadoop
on every node. It also makes the Hadoop Distributed
File System (HDFS) available via a POSIX compatible
file system using an NFS wrapper.

• services: Installs required services on every node; the
services depend on the node type.

• webserver setup: The setup for the webserver. It
contains tasks, like the installation of Apache2, cre-
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Software Version

Apache Hadoop 2.6.0
Ansible 1.9.2
Vagrant 1.7.2
Java OpenJDK 64-bit 1.7.0 79
Linux Ubuntu Server 14.04
MySQL 5.5.43
MongoDB 3.0.4
Apache2 2.4.7
PHP 5.5.9
Apache Spark 1.4.0
Yii2 2.0.5

Table 3: Software the SmartSHARK Deployment.

ation of the configuration for the web front-end, instal-
lation of required software (e.g., git, PHP5, curl, Mon-
goDB, MySQL, Apache Spark), installation of plug-
ins (e.g. PHP-MongoDB extension) and execution of
a Yii2 migration. The purpose of the Yii2 migration is
the instantiation of the MongoDB user collection with
default values.

• format hdfs: Formats the HDFS and is, therefore,
only executed on the name node.

For the configuration of the VMs the software versions
listed in Table 3 are used. Because we use a scripted de-
ployment method, we only require adaption of the Ansible
playbooks to change the version of one of the used software
versions and/or add additional software.

3.4.3 Requirements on the Cloud Environment
In order to be able to deploy SmartSHARK, the cloud

environment must support Vagrant. Ansible requires only
SSH and can, therefore, be used with any cloud provider.
To run the deployment, only two bash-commands must be
called. vagrant up -no-provision for the creation of the
VMs and vagrant provision for their configuration.

To deploy SmartSHARK on other cloud environments that
support Vagrant, the scripts may have to be adapted since
parts of the deployment are cloud provider specific, e.g., the
flavors of the VMs and the user credentials.

4. SOFTWARE ANALYTICS WITH SMART-
SHARK

In order to demonstrate the power of SmartSHARK, we
performed some experiments with it. First, we evaluated the
mining part of the platform, by cloning multiple projects and
collecting their data. Then, we created a sample analysis in
which we show how defect prediction models can be created
for the previously mined projects. Moreover, we adapted
the SmartSHARK front-end to directly show the results of
our sample analysis in order to allow quick feedback to re-
searchers and developers interested in such analysis and to
provide a major step towards making the analysis action-
able.

4.1 Data Collection
To evaluate if the mining of projects works as desired, we

selected some projects from GitHub [35]. We did not fol-
low any specific methodology for the selection of projects,
instead we just selected 20 projects randomly by browsing
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Figure 3: Performance of the Mining Process.

projects with the explore function of GitHub. The only re-
quirement for a project was that they were programmed in
Java, C or C++. Table 4 lists the mined projects, including
the number of commits, the number of files in the repository,
the size of the repository, the programming language, and a
very brief project description. The number of files and the
size are reported for the latest revision of the repository. For
each of the selected projects, we triggered the mining via the
web front-end of SmartSHARK. We measured how long the
different steps of the mining process took and recorded if we
encountered problems.

Figure 3 shows the time consumed for the mining. The
differences in the overall runtime between the projects are a
result of the differences in project size, number of files, and
number of commits. Even though the mining is only run-
ning on a single core of the Web server, the largest project
only took less than 45 hours to mine. Most time is con-
sumed by the collection of the metric data with InFamix
and the DECENTMongoDBConverter, i.e., the component
that stores the mined data in the MongoDB. There are two
outliers, where the runtime is consumed differently. The
first is guice, where the addition of the diffs consumes most
of the runtime (included in other). The second outlier is
the oryx project, for which the analysis of the repository
itself consumed the most time. When we investigated this,
we determined that CVSAnaly stopped working for a while,
but then simply resumed as if nothing happened. Upon fur-
ther investigation we determined that this was an issue with
CVSAnaly due to a race conditition in the implementation.

For Mahout [9], the mining simply stopped due to a fail-
ure of InFamix. InFamix did not throw any errors, it just
stopped working. Therefore, the process did not finish. We
were not able to track down the problem. But besides
this incident, there were no other failures in mining for the
projects that we have tested.

4.2 Software Analytics Example
In order to demonstrate the analytic capabilities of Smart-

SHARK, we implemented some examples for software defect
prediction. The example is not designed to have the high-
est performance possible or implement a very complex defect
prediction scheme. Instead, we want to demonstrate how the
data offered by SmartSHARK can be used and combined for
an analytic goal. Defect prediction is used to identify defect-
prone entities (e.g. source code files) in advance. Typically,
defect prediction models use a training set, which contains
various measures (e.g. code metrics) of available entities and
the history of the entities defect proneness. The prediction
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Project Lang. #Commits Size #Files Description

guice [38] Java 1442 89 MB 713 Dependency injection framework for Java.
openage [65] C++ 1761 8 MB 560 Project, which clones Age of Empires II.
Minesweeper [53] Java 65 7 MB 207 Minesweeper game for Android.
HackerNews [52] Java 12 1 MB 78 Pulls top stories from the HackerNews API for Android.
SMSSync [73] Java 1395 40 MB 557 SMS gateway for Android.
cursynth [72] C++ 219 3 MB 185 MIDI enabled, subtractive synthesizer, for the terminal.
passivedns [32] C 220 1 MB 50 Network sniffer, which logs DNS server replies.
oryx [17] Java 372 48 MB 537 A real-time large-scale machine learning infrastructure.
ohmu [39] C++ 226 3 MB 185 Compiler intermediate language for static analysis.
libxcam [1] C++ 250 3 MB 242 Project, with the aim to extend camera features.
libyami [2] C 487 4 MB 248 Library for media solutions on Linux.
wds [3] C++ 238 3 MB 193 Libraries for building Miracast/WiDi-enabled applications.
oclint [63] C++ 733 3 MB 349 Static source code analysis tool.
xgboost [22] C++ 1847 8 MB 373 Large-scale, distributed gradient boosting library.
elasticsearch-
hadoop [26]

Java 1243 9 MB 576 Elasticsearch real-time search and analytics natively inte-
grated with Hadoop.

cxxnet [20] C++ 852 4 MB 173 Concise, distributed deep learning framework.
mxnet [21] C++ 236 1 MB 124 Combines ideas from projects for machine learning.
osquery [29] C++ 2208 9 MB 555 Operating system instrumentation framework.
swift [30] Java 496 8 MB 427 Annotation-based Java library for Thrift.
fatal [28] C++ 401 3 MB 141 Library for fast prototyping of software in C++.

Table 4: Information about the Mined Projects.

model is fit to the training set. Afterwards, the model is
used to predict defects of entities in the future. This prese-
lection of entities, which most likely contain a bug, is done,
as budget, people and time, are often limited in develop-
ment organizations and therefore only some of the code can
be tested before releasing it [61].

4.2.1 Training and Test Data
The first decision one has to make is how to create training

and test data for such an approach. We are using a within-
project defect prediction approach, i.e., we built the defect
prediction model on the past of a project and evaluate it on
later revisions of the same project. Data from other projects
are not used during the training of a prediction model. To
select the training and test data within a project, we took
a pattern from [69]: We leave a short gap in the beginning,
i.e., we are excluding the first commits of a project, because
the change patterns may not be stable in the beginning [44,
51]. Then, we take the next commits of the data for train-
ing, leave a gap, and use the next period of the project to
evaluate the prediction model. Moreover, we do not consider
all commits until the end of the project, but leave another
gap, because here the data is usually worse in terms of bug
information, because there was less time for the identifica-
tion of the bugs. We use the information from the origin
analysis of DECENT based on the bug labels of CVSanaly
to identify which commits contained bugs. This information
is already contained in the data through the mining.

In case the project lifetime is shorter than 1400 commits,
we did not exclude the first commits. Additionally, we ex-
cluded the project ”HackerNews” from our analyis due to
the short history of only 12 commits.

4.2.2 Classification Models
We created three different classification models for each

project. Each of the models uses different data and shows
different possibilities of SmartSHARK.

The first classification model is based only on the social,

change, and static source code metrics. Using the metrics
as input, we trained a random forest for the classification.
The random forest is one of the machine learning algorithms
available in Spark’s Mllib. Training defect prediction based
on software metrics is a commonly used method in research
[16]. Due to the powerful mining based on DECENT the
combination of social aspects, change metrics, and static
source code metrics does not pose any problems with Smart-
SHARK. In the literature, we know only one example where
all three kinds of metrics were combined, however, this was
not in the context of defect prediction, but vulnerability pre-
diction [67].

The second classification model is based only on the diff
characteristic for text classification. Diff is calculated by
the differences between the last state and the new state of
the source code of the artifact. We created a bag-of-words
for the diffs and used the tf-idf [62] metric to estimate the
impact of certain terms. Based on this, we created a näıve
bayes classifier for the classification into defect-prone and
non-defect-prone files. The näıve bayes classifier is also avail-
able in Spark’s Mllib.

The third classification model is a combination of the two
approaches explained above, in order to demonstrate that
SmartSHARK allows the combined analysis based on soft-
ware metrics and text analysis. The third model internally
trains three prediction models. The first two are the random
forest and the näıve bayes model as described above. Addi-
tionally, we train a logistic regression model (also available
in Spark’s Mllib) based on the software metrics, i.e., on the
same data as the random forest. Then we use an ensemble
learning method called bagging [75] to determine the overall
classification. The random forest, the näıve bayes classi-
fier and the logistic regression model separately classify an
instance. Then, we use the majority vote of those three in-
ternal models to determine the overall classification of the
third model.

The results of our defect predictions are written back to
the MongoDB as new collection that is stored together with
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the analyzed entity. Through storing the analysis results in
the MongoDB, we enrich the database with more informa-
tion that was not gained through the mining directly, but
rather with advanced software analytics based on Smart-
SHARK itself. Therefore, SmartSHARK can feed itself with
more data.

4.2.3 Prediction Results
We store the confusion matrices for the classifiers in the

file system, from where users can download them in order to
analyze the prediction performance. Moreover, we modified
the SmartSHARK front-end to be able to visualize predic-
tion results and output performance metrics for defect pre-
dictions. We decided to perform this adaptation to show
that a platform like SmartSHARK also provides a way to-
wards actionable software analytics, as the results of predic-
tions can be integrated into the front-end. Hence, our front-
end displays information about the project history similar to
Bitergia and OpenHub, but also supports the visualization
of the results of deep software analytics.

We implemented the following front-end features for show-
ing and evaluating the prediction results.

• Zoomable graphs that depict the regions of the project
used for training and testing. Furthermore, these graphs
show how many software artifacts are actually defect-
prone according to the data, and how many are pre-
dicted as defect-prone, as well as the differences be-
tween the prediction and the actual values.

• Visualization of the so-called confidence cut, i.e., the
line after which we are not sure if the bug labels in
the data are correct, due to a small number of com-
mits afterwards. Tan et al. [69] suggest to choose this
such that the time from the last commit till the cut
is the average bug fixing time. As this data is not yet
available in SmartSHARK, we chose a time span of
three years based on findings by Jiang et al. [49]. Ad-
ditionally, SmartSHARK displays what data was used
for training, the classifier, and from which commit the
classification starts.

• The confusion matrix of a classifier as well as multiple
performance metrics, including the prediction error,
precision, recall, F-measure, G-measure, and Matthews
Correlation Coefficient (MCC).

In Figure 4, we show a screenshot of the web front-end
that shows the results for the third classifier, i.e., the one
that combines software metrics and text analysis for the
project passivedns. We do not provide a detailed analy-
sis of the performance of the different classification models
within this paper, because this is out of scope. Our aim was
not to create a high performance defect prediction model,
for which such an analysis is warranted and necessary, but
rather to show the analytic capabilities of SmartSHARK.

5. DISCUSSION
Within this section, we want to discuss the capabilities

of SmartSHARK, currently known limitations, and possi-
ble solutions. We separate this discussion into four parts,
analogous to the structure of SmartSHARK, i.e., the data
mining, the software analytics, the web front-end, and the
cloud deployment.

Figure 4: Results in the Web Front-end

5.1 Data Mining
The data mining is an important and powerful feature of

SmartSHARK. Since it is responsible for the collection of
the analysis data, it is a vital part of SmartSHARK. As we
showed, we can collect the data of many projects without
any problems and only experienced one failure of the mining
(see Section 4.1). The model-based mining process based on
DECENT provides a certain independence of the concrete
tools used to collect the data. E.g., to substitute a tool,
we only have to adapt the extraction of the DECENT facts
from the raw assets created by the tool [54]. All other as-
pects of the mining remain untouched. Similarly, we can eas-
ily add new information sources to SmartSHARK. We just
have to extend the DECENT meta-model with additional
attributes that fit the structure of the new facts. For exam-
ple, if want to mine mailing lists, we first extract the rele-
vant facts with a third party tool, e.g., MailingListStats [58].
Then, we map the facts to a corresponding meta-model and
provide a model-to-model transformation, e.g., by means of
Epsilon Transformation Language (ETL) or Epsilon Object
Language (EOL), which integrates the mined facts into the
DECENT model and we are finished. The rest of the mining
process remains untouched.

However, the data mining is not without problems and
limitations. Table 5 summarizes the current limitations of
SmartSHARKS mining process. The limitations (1)-(4) are
problems of the mining process itself. The execution of In-
Famix is sometimes unreliable, as our problem with the min-
ing of Mahout demonstrates (see Section 4.1). We need to
further analyze the source of this problem. Depending on the
severity and frequency of this mining issue, we may have to
replace InFamix with another metric calculation tool. More-
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Data Mining
Limitation Possible Solution

(1) InFamix unreliable Substitute InFamix
(2) Multiple programming
languages within a project
not yet supported

Substitute InFamix or exe-
cute InFamix multiple pro-
gramming languages

(3) Bug labels are assigned
heuristically

Integrate Issue Tracking
System facts

(4) No incremental update
of projects

Adapt mining process

(5) InFamix slow Massive parallelization
(6) Whole EMF model must
fit into the RAM during
mining

Provide more resources or
implement EMF-Fragments
[64]

(7) DECENTMongoD-
BConverter slow due to
double pass to set cross
references

Refactor the DECENT-
MongoDBConverter to use
Apache Spark

(8) Only one project can be
mined at a time

Provide more resources

Table 5: Limitations of the Data Mining.

over, InFamix can only calculate software metrics for one
project at a time. Since we currently only execute InFamix
once, this also means that we currently can also only calcu-
late software metrics for one programming language within
SmartSHARK. The solution for this is to extend the config-
uration possibilities of SmartSHARK and allow the selection
of multiple programming languages. We can then execute
InFamix once for each programming language. However, In-
Famix only supports Java, C, and C++ and we, therefore,
might need to consider other tools for different languages.
The third problem is related to the current identification
of the bug labels, based on the BugFixMessage extension
of CVSAnaly. CVSAnaly marks revisions as bugfix revi-
sions by looking in the commit message and searching for
keywords like bug or fix. This information is sometimes
error-prone or missing (e.g., a developer fixed a bug but
does not mention it in the commit message). A partial so-
lution for this problem would be the integration of facts
extracted from an issue tracking system, e.g., with BZEx-
tractor, as proposed by Makedonski et al. [54], to improve
the bug label assignment. Moreover, we currently cannot
update the mined data of projects, because of limitations
in the model-based mining framework. A workaround is to
delete a project and re-collect the data at a later point. How-
ever, this does not scale well, especially with larger projects.
Instead, the mining process should be adapted to allow in-
cremental mining.

The problems (5)–(6) are two bottlenecks regarding the
duration of the mining process (see Section 4.1). The first
bottleneck is the very slow execution of InFamix, because
every version of a project is analyzed subsequently. We see
two possible solutions to this problem: either we add more
resources to our mining process that allow the execution of
InFamix in parallel, e.g., by also using the Hadoop cluster
for this task or provide a separate cluster for InFamix. More-
over, we could try to incorporate a modern analysis method
like the LISA parser [4] for the fast analysis of the complete
history of a project. The second bottleneck in the min-
ing process is the conversion of the DECENT model to the
MongoDB. However, our implementation of the DECENT-
MongoDBConverter leaves plenty of room for optimization.

For example, we could use Apache Spark internally to speed
up the process through massive parallelization.

The seventh limitation we found for the mining is due
to the model-based mining approach. All models must fit
into the RAM during the mining. This limitation could be
overcome by splitting the model into fragments [64].

The limitations (5)–(7) are all limitations due the avail-
able resources. Our eigth limitation is a corollary to this:
we can currently mine only one project at a time. However,
in case we would have multiple VMs available just for the
mining of projects, we could easily process multiple projects
at a time.

5.2 Software Analytics
As the analytics examples in Section 4.2 show, the analyt-

ics based on the mined data in the MongoDB with Apache
Spark allows flexible and scalable analysis jobs. Java and
Python are popular languages which should facilitate an
easy adoption of Apache Spark and, by extension, Smart-
SHARK. Moreover, Apache Spark provides good support
for the connection with the MongoDB, e.g., through the
deep framework [68]. Moreover, there are already libraries
for Apache Spark which are useful for the analysis of soft-
ware projects, e.g., the Mllib for machine learning which we
also use in our analytic examples, or GraphX for graph and
graph-parallel computations.

In our examples, we used only defect prediction and only
data of one project. However, there is no reason why data
from multiple projects cannot be used for the analytics, or
why other interesting topics, like effort prediction or software
evolution in general could not be studied.

We currently see only one major limitation to the analyt-
ics. The Mllib of Apache Spark is rather small in comparison
to the possibilities offered by languages like R [70] or tools
like Weka [42]. This limitation can only be overcome by the
extension of the existing or the creation of new libraries for
software analytics with Apache Spark.

5.3 Web Front-end
The web front-end provides an easy-to-use starting point

for the analysis of projects. It provides a convenient interface
for administrators to add projects with the integrated data
mining, as well as job monitoring for the currently running
Spark jobs. For researchers, it facilitates the submission
of own analysis jobs as well as the download of all created
results. Through the provision of examples on the front-end,
we provide a cookbook style guideline for new analyses. The
separation of the users in three different roles provides basic
security functions, e.g., by restricting who is allowed to write
to the MongoDB.

We currently see one limitation for our web front-end.
The creation of the zoomable graphs for the projects can
become quite large due to the potentially very high number
of commits in projects. This can significantly slow down the
loading time of pages. We could solve this either by pre-
calculating the graphs and, thereby, speed-up the loading
time at the cost of more resources at the server side or try
to use advanced visualization techniques that require less
resources to depict the same amount of information.

5.4 Cloud Deployment
Our cloud deployment of SmartSHARK allows the scal-

ing of the platform, which makes it suitable for analysing
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Figure 5: Optimized SmartSHARK Deployment

huge amounts of data, as well as executing highly resource-
demanding analytics. Moreover, since the platform is read-
ily available for researchers, they can concentrate on writing
analytics programs and do not have to setup and maintain
the analysis infrastructure. Due to our usage of automated
deployment scripts, we facilitate that SmartSHARK can be
easily adapted to both: new underlying software as well as a
new cloud infrastructure. This also facilitates the recovery
of SmartSHARK in case of fatal problems.

However, our current deployment is responsible for many
of the above listed limitations to the mining and analyt-
ics, as they are due to the lack of resources which tied our
hands to some degree. Therefore, we would like to port
SmartSHARK to a larger cloud infrastructure in the future.
Figure 5 illustrates, how an optimized large-scale cloud de-
ployment of SmartSHARK can look like. We replace the
single VM for the webserver with a webserver cluster with
one or more load balancers. Furthermore, instead of per-
forming the mining on the webserver, we deploy a sepa-
rate mining cluster. This mining cluster has a master node,
which distributes the different mining tasks to the mining
nodes. Additionally, this mining cluster communicates with
the Apache Hadoop cluster via Apache Spark e.g., for the
execution of the DECENTMongoDBConverter.

The Apache Hadoop cluster consists of the namenode and
the secondary namenode, as well as the resourcemanager and
a specified amount of slaves. The webserver can commu-
nicate via Apache Spark with the Apache Hadoop cluster.
Furthermore, instead of running the MongoDB on the web-
server, we introduce the MongoDB cluster. The MongoDB
cluster uses sharding [60] to make read and write accesses
more efficient. To this aim, we deploy shards to store the
data, routers to processes target operations and queries to
shards and three configuration servers to store the cluster
metadata. The MongoDB documentation highlights that
exactly three configuration servers are required [60].

Figure 5 does not show, that all these clusters are deployed
in a cloud environment, but this is strongly recommended as
the addition of new resources to the machines is easier this
way. Furthermore, the communication flow in the Apache
Hadoop cluster is not depicted.

This optimized infrastructure could be easily set up via
Vagrant and Ansible by adapting our scripts. The reason,

why we have not yet deployed SmartSHARK this way is our
current limitation on resources.

6. CONCLUSION
We presented SmartSHARK, a cloud platform that com-

bines software mining with software analytics. The software
mining is model-based, which allows easy integration of new
data into the mining process as well as substitution of used
tools. All mined data is stored in a MongoDB, i.e., a state-
of-the-art NoSQL database that can easily hold terabytes of
data. For the definition of analysis jobs, SmartSHARK uses
Apache Spark with an Apache Hadoop cluster in the back-
end for the parallel and efficient execution of tasks. Users
can access SmartSHARK via a web front-end, through which
they can submit analysis jobs and download the results. Us-
ing an analytic example, we showed how SmartSHARK can
be used to define powerful software analytics. Our exam-
ple demonstrates that the Mllib of Apache Spark provides
a good foundation for deep analytics with machine learn-
ing and that different kinds of information available from
the mining, i.e., metric data and textual differences can be
combined without much effort.

In the future, we plan to migrate SmartSHARK to a
larger cloud environment, where we can achieve a deploy-
ment closer to the optimized deployment described in Sec-
tion 5.4. Moreover, we plan to enhance the mining process
by incorporating more tools, e.g., BZExtractor [54] to in-
clude data from Bugzilla or MailingListStats [58] to incor-
porate mailing lists.

Furthermore, we want to build libraries based on Apache
Spark that are useful for software analytics, e.g., for bench-
marking, analysis across multiple projects, or analysis of so-
cial and dependency graphs. Through the provision of such
libraries, we want to contribute to a solution of the prob-
lem of non-replicable studies, which remains till today [55].
The usage of different tooling and platforms for mining and
analysing the data is one of many reasons for this. Non-
replicable studies force researcher to start over instead of
reusing and improving results from a colleague [12]. Further-
more, meta-analysis (analyse an analysis) are not possible
because of this problem. Through the provision of a com-
mon foundation, SmartSHARK can at least partially solve
this issue.
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